Any-world assumptions in logic programming

Due to the usual incompleteness of information representation, any approach to assign a semantics to logic programs has to rely on a default assumption on the missing information. The stable model semantics, that has become the dominating approach to give semantics to logic programs, relies on the Closed World Assumption (CWA), which asserts that by default the truth of an atom is false. There is a second well-known assumption, called Open World Assumption (OWA), which asserts that the truth of the atoms is supposed to be unknown by default. However, the CWA, the OWA and the combination of them are extremal, though important, assumptions over a large variety of possible assumptions on the truth of the atoms, whenever the truth is taken from an arbitrary truth space.The topic of this paper is to allow any assignment (i.e. interpretation), over a truth space, to be a default assumption. Our main result is that our extension is conservative in the sense that under the "everywhere false" default assumption (CWA) the usual stable model semantics is captured. Due to the generality and the purely algebraic nature of our approach, it abstracts from the particular formalism of choice and the results may be applied in other contexts as well.

[1]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[2]  Melvin Fitting,et al.  A Kripke-Kleene Semantics for Logic Programs , 1985, J. Log. Program..

[3]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[4]  Melvin Fitting,et al.  Bilattices and the Semantics of Logic Programming , 1991, J. Log. Program..

[5]  Melvin Fitting,et al.  Kleene's Logic, Generalized , 1991, J. Log. Comput..

[6]  Umberto Straccia,et al.  Epistemic foundation of stable model semantics , 2004, Theory and Practice of Logic Programming.

[7]  C. Damásio,et al.  A survey of paraconsistent semantics for logic programs , 1998 .

[8]  Arnon Avron,et al.  The Value of the Four Values , 1998, Artif. Intell..

[9]  Victor W. Marek,et al.  Autoepistemic logic , 1991, JACM.

[10]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[11]  R. Reiter On Closed World Data Bases , 1987, Logic and Data Bases.

[12]  J. Horty Nonmonotonic Logic , 2001 .

[13]  Chiaki Sakama,et al.  Induction from answer sets in nonmonotonic logic programs , 2005, TOCL.

[14]  Victor W. Marek,et al.  Ultimate Approximations in Nonmonotonic Knowledge Representation Systems , 2002, KR.

[15]  Victor W. Marek,et al.  Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning , 2000 .

[16]  John McCarthy,et al.  Applications of Circumscription to Formalizing Common Sense Knowledge , 1987, NMR.

[17]  V. S. Subrahmanian,et al.  Theory of Generalized Annotated Logic Programming and its Applications , 1992, J. Log. Program..

[18]  Umberto Straccia,et al.  The Well-Founded Semantics in Normal Logic Programs with Uncertainty , 2002, FLOPS.

[19]  Matthew L. Ginsberg,et al.  Readings in Nonmonotonic Reasoning , 1987, AAAI 1987.

[20]  Umberto Straccia,et al.  The Approximate Well-Founded Semantics for Logic Programs with Uncertainty , 2003, MFCS.

[21]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[22]  Luís Moniz Pereira,et al.  Antitonic Logic Programs , 2001, LPNMR.

[23]  Melvin Fitting,et al.  Fixpoint Semantics for Logic Programming a Survey , 2001, Theor. Comput. Sci..

[24]  Victor W. Marek,et al.  Uniform semantic treatment of default and autoepistemic logics , 2000, Artif. Intell..

[25]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[26]  Umberto Straccia,et al.  Uncertainty and Partial Non-uniform Assumptions in Parametric Deductive Databases , 2002, JELIA.

[27]  Jack Minker,et al.  Logic and Data Bases , 1978, Springer US.

[28]  Francesco Scarcello,et al.  Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics, and Computation , 1997, Inf. Comput..

[29]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[30]  V. Wiktor Marek,et al.  Nonmonotonic Logic , 1993, Artificial Intelligence.

[31]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[32]  Robert C. Moore Semantical Considerations on Nonmonotonic Logic , 1985, IJCAI.

[33]  Nicolas Spyratos,et al.  Hypothesis-based semantics of logic programs in multivalued logics , 2004, TOCL.

[34]  Katsumi Inoue,et al.  Hypothetical Reasoning in Logic Programs , 1994, J. Log. Program..

[35]  Laks V. S. Lakshmanan,et al.  A Parametric Approach to Deductive Databases with Uncertainty , 1996, Logic in Databases.

[36]  Umberto Straccia,et al.  Default Knowledge in Logic Programs with Uncertainty , 2003, ICLP.

[37]  Drew McDermott,et al.  Nonmonotonic Logic II: Nonmonotonic Modal Theories , 1982, JACM.

[38]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[39]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .

[40]  Jack Minker,et al.  Logic-Based Artificial Intelligence , 2000 .

[41]  Reiner Hähnle,et al.  Deduction in many-valued logics: a survey , 1997 .

[42]  Nicolas Spyratos,et al.  Parametrized semantics of logic programs--a unifying framework , 2003, Theor. Comput. Sci..

[43]  Luís Moniz Pereira,et al.  Paraconsistent Logic Programs , 2002, JELIA.

[44]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[45]  Robert C. Moore Possible-World Semantics for Autoepistemic Logic , 1987, NMR.

[46]  Ofer Arieli,et al.  Paraconsistent Declarative Semantics for Extended Logic Programs , 2010 .

[47]  Umberto Straccia,et al.  Epistemic Foundation of the Well-Founded Semantics over Bilattices , 2004, MFCS.

[48]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[49]  J. McCarthy Circumscription|a Form of Nonmonotonic Reasoning , 1979 .

[50]  Melvin Fitting,et al.  The Family of Stable Models , 1993, J. Log. Program..

[51]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[52]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[53]  José Júlio Alferes,et al.  On Logic Program Semantics with Two Kinds of Negation , 1992, JICSLP.

[54]  V. S. Subrahmanian,et al.  Paraconsistent Logic Programming , 1987, FSTTCS.

[55]  Matthew L. Ginsberg,et al.  Multivalued logics: a uniform approach to reasoning in artificial intelligence , 1988, Comput. Intell..

[56]  Arnon Avron,et al.  Reasoning with logical bilattices , 1996, J. Log. Lang. Inf..