Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia

Horizontal transfer of transposable elements is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of transposable elements at what appears to be a high rate compared to other mammals. We investigated the occurrence of horizontally transferred DNA transposons involving bats. We found over 200 putative horizontally transferred elements within bats; sixteen transposons were shared across distantly related mammalian clades and two other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.

[1]  Voichita D. Marinescu,et al.  Evolutionary constraint and innovation across hundreds of placental mammals , 2023, bioRxiv.

[2]  Matthew G. Johnson,et al.  Insights into mammalian TE diversity via the curation of 248 mammalian genome assemblies , 2022, bioRxiv.

[3]  W. Murphy,et al.  A genomic timescale for placental mammal evolution , 2022, bioRxiv.

[4]  Maxwell D. Sanderford,et al.  TimeTree 5: An Expanded Resource for Species Divergence Times , 2022, Molecular biology and evolution.

[5]  R. Hubley,et al.  Curation Guidelines for de novo Generated Transposable Element Families , 2021, Current protocols.

[6]  M. Blaxter,et al.  Launching the Tree of Life Gateway , 2021, Wellcome open research.

[7]  C. Pavey Comparative echolocation and foraging ecology of horseshoe bats (Rhinolophidae) and Old World leaf-nosed bats (Hipposideridae)1 , 2021, Australian Journal of Zoology.

[8]  Graham M. Hughes,et al.  Large‐scale genome sampling reveals unique immunity and metabolic adaptations in bats , 2021, Molecular ecology.

[9]  Lin‐Fa Wang,et al.  Lessons from the host defences of bats, a unique viral reservoir , 2021, Nature.

[10]  C. Feschotte,et al.  Evolution of mouse circadian enhancers from transposable elements , 2020, bioRxiv.

[11]  Elverson Soares de Melo,et al.  Mosquito genomes are frequently invaded by transposable elements through horizontal transfer , 2020, PLoS genetics.

[12]  Voichita D. Marinescu,et al.  A comparative genomics multitool for scientific discovery and conservation , 2020, Nature.

[13]  C. Feschotte,et al.  A Field Guide to Eukaryotic Transposable Elements. , 2020, Annual review of genetics.

[14]  Travis J. Wheeler,et al.  The Dfam community resource of transposable element families, sequence models, and genome annotations , 2020, Mobile DNA.

[15]  S. Sugano,et al.  Comparative genomic analyses illuminate the distinct evolution of megabats within Chiroptera , 2020, DNA research : an international journal for rapid publication of reports on genes and genomes.

[16]  L. Dávalos,et al.  Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats , 2020, Molecular ecology.

[17]  Graham M. Hughes,et al.  Six reference-quality genomes reveal evolution of bat adaptations , 2020, Nature.

[18]  Sergey Koren,et al.  Towards complete and error-free genome assemblies of all vertebrate species , 2020, Nature.

[19]  A. Zhong,et al.  Recurrent evolution of vertebrate transcription factors by transposase capture , 2020, Science.

[20]  J. Peccoud,et al.  Horizontal transfer and evolution of transposable elements in vertebrates , 2020, Nature Communications.

[21]  Graham M. Hughes,et al.  Six new reference-quality bat genomes illuminate the molecular basis and evolution of bat adaptations , 2019, bioRxiv.

[22]  B. Carstens,et al.  Diversification rates have no effect on the convergent evolution of foraging strategies in the most speciose genus of bats, Myotis * , 2019, Evolution; international journal of organic evolution.

[23]  Bruce D. Patterson,et al.  Molecular phylogenetics of the African horseshoe bats (Chiroptera: Rhinolophidae): expanded geographic and taxonomic sampling of the Afrotropics , 2019, BMC Evolutionary Biology.

[24]  A. Dobson,et al.  Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence , 2019, medRxiv.

[25]  S. Puechmaille,et al.  Longitudinal comparative transcriptomics reveals unique mechanisms underlying extended healthspan in bats , 2019, Nature Ecology & Evolution.

[26]  A. Curtis,et al.  Signatures of echolocation and dietary ecology in the adaptive evolution of skull shape in bats , 2019, Nature Communications.

[27]  Antonio Palazzo,et al.  Transcriptionally promiscuous “blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes , 2019, Mobile DNA.

[28]  Antonio Palazzo,et al.  Transcriptionally promiscuous “blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes , 2019, Mobile DNA.

[29]  Jeffrey D. Mandell,et al.  Transposon Molecular Domestication and the Evolution of the RAG Recombinase , 2019, Nature.

[30]  J. Peccoud,et al.  Global survey of mobile DNA horizontal transfer in arthropods reveals Lepidoptera as a prime hotspot , 2019, PLoS genetics.

[31]  V. Misra,et al.  Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover , 2019, Viruses.

[32]  C. Schlötterer,et al.  Molecular dissection of a natural transposable element invasion , 2018, Genome research.

[33]  C. Feschotte,et al.  Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. , 2018, Current opinion in genetics & development.

[34]  S. Catalano,et al.  Bat Systematics in the Light of Unconstrained Analyses of a Comprehensive Molecular Supermatrix , 2018, Journal of Mammalian Evolution.

[35]  M Thomas P Gilbert,et al.  Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. , 2018, Annual review of animal biosciences.

[36]  Graham M. Hughes,et al.  Growing old, yet staying young: The role of telomeres in bats’ exceptional longevity , 2018, Science Advances.

[37]  D. Ray,et al.  Mammalian transposable elements and their impacts on genome evolution , 2018, Chromosome Research.

[38]  Christopher D. Brown,et al.  Transposable elements are the primary source of novelty in primate gene regulation , 2017, Genome research.

[39]  J. Peccoud,et al.  Massive horizontal transfer of transposable elements in insects , 2017, Proceedings of the National Academy of Sciences.

[40]  D. Ray,et al.  Evolution and Diversity of Transposable Elements in Vertebrate Genomes , 2017, Genome biology and evolution.

[41]  S. Boissinot,et al.  The Evolution of LINE-1 in Vertebrates , 2016, Genome biology and evolution.

[42]  D. Ray,et al.  Pinpointing the vesper bat transposon revolution using the Miniopterus natalensis genome , 2016, Mobile DNA.

[43]  Zhigang Jiang How many species are there on Earth , 2016 .

[44]  Andreas Gogol-Döring,et al.  A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes , 2016, Nature Communications.

[45]  B. Moumen,et al.  Continuous Influx of Genetic Material from Host to Virus Populations , 2016, PLoS genetics.

[46]  D. Ray,et al.  Differential SINE evolution in vesper and non-vesper bats , 2015, Mobile DNA.

[47]  Tisha Chung,et al.  A family of transposable elements co-opted into developmental enhancers in the mouse neocortex , 2015, Nature Communications.

[48]  Floriane Plard,et al.  Comparative Analysis of Transposable Elements Highlights Mobilome Diversity and Evolution in Vertebrates , 2015, Genome biology and evolution.

[49]  Zhihai Ma,et al.  Widespread contribution of transposable elements to the innovation of gene regulatory networks , 2014, Genome research.

[50]  S. Puechmaille,et al.  How and Why Overcome the Impediments to Resolution: Lessons from rhinolophid and hipposiderid Bats , 2014, Molecular biology and evolution.

[51]  I. Guarniero How Many Species Are There on Earth and in the Ocean? (PLOS Biology) , 2014 .

[52]  Robert J. Baker,et al.  Rolling-Circle Transposons Catalyze Genomic Innovation in a Mammalian Lineage , 2014, Genome biology and evolution.

[53]  E. Herniou,et al.  Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons , 2014, Nature Communications.

[54]  S. Jackson,et al.  Widespread and frequent horizontal transfers of transposable elements in plants , 2014, Genome research.

[55]  Anders Krogh,et al.  Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii , 2013, Nature Communications.

[56]  C. Feschotte,et al.  Genome-Wide Characterization of Endogenous Retroviruses in the Bat Myotis lucifugus Reveals Recent and Diverse Infections , 2013, Journal of Virology.

[57]  G. Bourque,et al.  The Majority of Primate-Specific Regulatory Sequences Are Derived from Transposable Elements , 2013, PLoS genetics.

[58]  Josefa González,et al.  The impact of transposable elements in environmental adaptation , 2013, Molecular ecology.

[59]  J. Baker,et al.  Endogenous retroviruses function as species-specific enhancer elements in the placenta , 2013, Nature Genetics.

[60]  Lijun Wu,et al.  Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity , 2013, Science.

[61]  R. Mitra,et al.  Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon , 2012, Proceedings of the National Academy of Sciences.

[62]  Keith R. Oliver,et al.  Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis , 2012, Ecology and evolution.

[63]  J. Jurka,et al.  Horizontal transfers of Mariner transposons between mammals and insects , 2012, Mobile DNA.

[64]  M. F. Ortiz,et al.  Horizontal Transposon Transfer in Eukarya: Detection, Bias, and Perspectives , 2012, Genome biology and evolution.

[65]  D. Ray,et al.  Survey Sequencing Reveals Elevated DNA Transposon Activity, Novel Elements, and Variation in Repetitive Landscapes among Vesper Bats , 2012, Genome biology and evolution.

[66]  Michael D. Wilson,et al.  Waves of Retrotransposon Expansion Remodel Genome Organization and CTCF Binding in Multiple Mammalian Lineages , 2012, Cell.

[67]  C. Mora,et al.  How Many Species Are There on Earth and in the Ocean? , 2011, PLoS biology.

[68]  Keith R. Oliver,et al.  Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates , 2011, Mobile DNA.

[69]  V. Rao,et al.  Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus , 2011, Parasites & Vectors.

[70]  D. Ray,et al.  The limited distribution of Helitrons to vesper bats supports horizontal transfer. , 2011, Gene.

[71]  J. Lack,et al.  Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae , 2010 .

[72]  Miriam K. Konkel,et al.  LINEs and SINEs of primate evolution , 2010, Evolutionary anthropology.

[73]  Cédric Feschotte,et al.  Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. , 2010, Trends in ecology & evolution.

[74]  Ellen J. Pritham,et al.  Pervasive Horizontal Transfer of Rolling-Circle Transposons among Animals , 2010, Genome biology and evolution.

[75]  G. Bourque,et al.  Transposable elements have rewired the core regulatory network of human embryonic stem cells , 2010, Nature Genetics.

[76]  R. Hubley,et al.  PiggyBac-ing on a Primate Genome: Novel Elements, Recent Activity and Horizontal Transfer , 2010, Genome biology and evolution.

[77]  C. Feschotte,et al.  A role for host–parasite interactions in the horizontal transfer of transposons across phyla , 2010, Nature.

[78]  M. Muñoz-López,et al.  DNA Transposons: Nature and Applications in Genomics , 2010, Current genomics.

[79]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[80]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[81]  M. Batzer,et al.  The impact of retrotransposons on human genome evolution , 2009, Nature Reviews Genetics.

[82]  Marlen S. Clark,et al.  Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods , 2008, Proceedings of the National Academy of Sciences.

[83]  D. Ray,et al.  Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. , 2008, Genome research.

[84]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[85]  A. Weiner,et al.  An Abundant Evolutionarily Conserved CSB-PiggyBac Fusion Protein Expressed in Cockayne Syndrome , 2008, PLoS genetics.

[86]  H. Wichman,et al.  Loss of LINE-1 Activity in the Megabats , 2008, Genetics.

[87]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[88]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[89]  D. Haussler,et al.  Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53 , 2007, Proceedings of the National Academy of Sciences.

[90]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[91]  C. Feschotte,et al.  The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. , 2007, Genome research.

[92]  Cédric Feschotte,et al.  Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus , 2007, Proceedings of the National Academy of Sciences.

[93]  D. Ray,et al.  Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. , 2006, Molecular biology and evolution.

[94]  M. Batzer,et al.  Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[95]  S. O’Brien,et al.  A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record , 2005, Science.

[96]  M. Tassabehji,et al.  Isolation and characterisation of GTF2IRD2, a novel fusion gene and member of the TFII-I family of transcription factors, deleted in Williams–Beuren syndrome , 2004, European Journal of Human Genetics.

[97]  David Gordon,et al.  Viewing and Editing Assembled Sequences Using Consed , 2003, Current protocols in bioinformatics.

[98]  M. Fenton,et al.  Relationships between external morphology and foraging behaviour: bats in the genus Myotis , 2002 .

[99]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[100]  D. Kordis,et al.  Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[101]  A. Smit,et al.  The origin of interspersed repeats in the human genome. , 1996, Current opinion in genetics & development.

[102]  M. Churchill,et al.  A purified mariner transposase is sufficient to mediate transposition in vitro , 1996, The EMBO journal.

[103]  Arend Sidow,et al.  Molecular phylogeny , 1992, Current Biology.

[104]  J. Saiz,et al.  Right‐sided non‐recurrent laryngeal nerve without any vascular anomaly: an anatomical trap , 2021, ANZ journal of surgery.

[105]  D. Jacobs,et al.  Molecular phylogenetics and historical biogeography of Rhinolophus bats. , 2010, Molecular phylogenetics and evolution.

[106]  S. Boissinot,et al.  Independent and parallel lateral transfer of DNA transposons in tetrapod genomes. , 2010, Gene.

[107]  S. Boissinot,et al.  L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. , 2004, Trends in genetics : TIG.

[108]  Jonathan B. Clark,et al.  Factors that affect the horizontal transfer of transposable elements. , 2004, Current issues in molecular biology.

[109]  G. Csorba,et al.  Horseshoe Bats of the World (Chiroptera : rhinolophidae) , 2003 .

[110]  D. Hartl,et al.  Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. , 1995, Molecular biology and evolution.

[111]  R. Nowak,et al.  Walker's mammals of the world , 1968 .