Interneuron networks in the hippocampus

The hippocampus has contributed enormously to our understanding of the operation of elemental brain circuits, not least through the classification of forebrain interneurons. Understanding the operation of interneuron networks however requires not only a wiring diagram that describes the innervation and postsynaptic targets of different GABAergic cells, but also an appreciation of the temporal dimension. Interneurons differ extensively in their intrinsic firing rates, their recruitment in different brain rhythms, and in their synaptic kinetics. Furthermore, in common with principal neurons, both the synapses innervating interneurons and the synapses made by these cells are highly modifiable, reflecting both their recent or remote use (short-term and long-term plasticity) and the action of extracellular messengers. This review examines recent progress in understanding how different hippocampal interneuron networks contribute to feedback and feed-forward inhibition at different timescales.

[1]  Adriano B. L. Tort,et al.  On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus , 2007, Proceedings of the National Academy of Sciences.

[2]  J. Lacaille,et al.  A hebbian form of long-term potentiation dependent on mGluR1a in hippocampal inhibitory interneurons , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Z. Borhegyi,et al.  Fast Synaptic Subcortical Control of Hippocampal Circuits , 2009, Science.

[4]  T. Freund,et al.  Perisomatic Inhibition , 2007, Neuron.

[5]  G. Barrionuevo,et al.  Critical Involvement of Postsynaptic Protein Kinase Activation in Long-Term Potentiation at Hippocampal Mossy Fiber Synapses on CA3 Interneurons , 2010, The Journal of Neuroscience.

[6]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[7]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[8]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[9]  D. Rusakov,et al.  Slow GABA Transient and Receptor Desensitization Shape Synaptic Responses Evoked by Hippocampal Neurogliaform Cells , 2010, The Journal of Neuroscience.

[10]  K. Roche,et al.  mGluR7 Is a Metaplastic Switch Controlling Bidirectional Plasticity of Feedforward Inhibition , 2005, Neuron.

[11]  Szabolcs Káli,et al.  Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics , 2010, The Journal of physiology.

[12]  G. Barrionuevo,et al.  Bidirectional Hebbian Plasticity at Hippocampal Mossy Fiber Synapses on CA3 Interneurons , 2008, The Journal of Neuroscience.

[13]  Hans R. Gelderblom,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001 .

[14]  Peter Somogyi,et al.  Anti-Hebbian Long-Term Potentiation in the Hippocampal Feedback Inhibitory Circuit , 2007, Science.

[15]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[16]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[17]  H. Adesnik,et al.  Input normalization by global feedforward inhibition expands cortical dynamic range , 2009, Nature Neuroscience.

[18]  C. McBain,et al.  M3 Muscarinic Acetylcholine Receptor Expression Confers Differential Cholinergic Modulation to Neurochemically Distinct Hippocampal Basket Cell Subtypes , 2010, The Journal of Neuroscience.

[19]  E. Moser,et al.  Gamma oscillations in the hippocampus. , 2010, Physiology.

[20]  Thomas Klausberger,et al.  GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus , 2009, The European journal of neuroscience.

[21]  Lindsey L. Glickfeld,et al.  Complementary Modulation of Somatic Inhibition by Opioids and Cannabinoids , 2008, The Journal of Neuroscience.

[22]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[23]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[24]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[25]  Dimitri M. Kullmann,et al.  Oscillations and Filtering Networks Support Flexible Routing of Information , 2010, Neuron.

[26]  D. Rusakov,et al.  GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells , 2008, The Journal of Neuroscience.

[27]  J. Lacaille,et al.  Afferent‐specific properties of interneuron synapses underlie selective long‐term regulation of feedback inhibitory circuits in CA1 hippocampus , 2010, The Journal of physiology.

[28]  C. McBain,et al.  Two Loci of Expression for Long-Term Depression at Hippocampal Mossy Fiber-Interneuron Synapses , 2004, The Journal of Neuroscience.

[29]  Stéphanie Ratté,et al.  Synapse‐specific mGluR1‐dependent long‐term potentiation in interneurones regulates mouse hippocampal inhibition , 2004, The Journal of physiology.

[30]  G. Buzsáki Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory , 2005, Hippocampus.

[31]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[32]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[33]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[34]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[35]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[36]  R. Dingledine,et al.  Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons. , 2004, Journal of neurophysiology.

[37]  Marco Capogna,et al.  Specific inhibitory synapses shift the balance from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells , 2007, The European journal of neuroscience.

[38]  D. Kullmann,et al.  Long-term synaptic plasticity in hippocampal interneurons , 2007, Nature Reviews Neuroscience.

[39]  Hannah Monyer,et al.  NMDA Receptor Ablation on Parvalbumin-Positive Interneurons Impairs Hippocampal Synchrony, Spatial Representations, and Working Memory , 2010, Neuron.

[40]  Gabor Szabo,et al.  Asynchronous Transmitter Release from Cholecystokinin-Containing Inhibitory Interneurons Is Widespread and Target-Cell Independent , 2009, The Journal of Neuroscience.

[41]  T. Freund,et al.  Synaptic Input of Horizontal Interneurons in Stratum Oriens of the Hippocampal CA1 Subfield: Structural Basis of Feed‐back Activation , 1995, The European journal of neuroscience.

[42]  Dimitri M Kullmann,et al.  Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination , 2005, Nature Neuroscience.

[43]  Adriano B. L. Tort,et al.  Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons , 2009, Proceedings of the National Academy of Sciences.

[44]  G. Maccaferri,et al.  Electrical Coupling between Interneurons with Different Excitable Properties in the Stratum Lacunosum-Moleculare of the Juvenile CA1 Rat Hippocampus , 2005, The Journal of Neuroscience.

[45]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[46]  D. Kullmann,et al.  Ih-mediated depolarization enhances the temporal precision of neuronal integration , 2011, Nature communications.

[47]  J. Magee,et al.  Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons , 2010, Nature Neuroscience.

[48]  D. Kullmann,et al.  Group I mGluR Agonist-Evoked Long-Term Potentiation in Hippocampal Oriens Interneurons , 2011, The Journal of Neuroscience.

[49]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[50]  L.F. Abbott,et al.  Gating Multiple Signals through Detailed Balance of Excitation and Inhibition in Spiking Networks , 2009, Nature Neuroscience.

[51]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[52]  Robert J. Morgan,et al.  Regulation of Fast-Spiking Basket Cell Synapses by the Chloride Channel ClC–2 , 2010, Nature Neuroscience.

[53]  M. Bartos,et al.  Associative Plasticity at Excitatory Synapses Facilitates Recruitment of Fast-Spiking Interneurons in the Dentate Gyrus , 2010, The Journal of Neuroscience.

[54]  Hannah Monyer,et al.  Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro , 2005, The Journal of physiology.

[55]  Margaret F. Carr,et al.  Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval , 2011, Nature Neuroscience.

[56]  Norbert Hájos,et al.  Synaptic Currents in Anatomically Identified CA3 Neurons during Hippocampal Gamma Oscillations In Vitro , 2006, The Journal of Neuroscience.

[57]  Jesse Jackson,et al.  Self-generated theta oscillations in the hippocampus , 2009, Nature Neuroscience.

[58]  I. Módy,et al.  Control of hippocampal gamma oscillation frequency by tonic inhibition and excitation of interneurons , 2009, Nature Neuroscience.

[59]  Ivan Soltesz,et al.  Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast , 2007, Proceedings of the National Academy of Sciences.

[60]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[61]  R. Yuste,et al.  Depolarizing effect of neocortical chandelier neurons , 2022 .

[62]  Peter Somogyi,et al.  Cell Type-Specific Long-Term Plasticity at Glutamatergic Synapses onto Hippocampal Interneurons Expressing either Parvalbumin or CB1 Cannabinoid Receptor , 2010, The Journal of Neuroscience.

[63]  J. Isaacson,et al.  Odor Representations in Olfactory Cortex: “Sparse” Coding, Global Inhibition, and Oscillations , 2009, Neuron.

[64]  L. Acsády,et al.  Target Selectivity and Neurochemical Characteristics of VIP‐immunoreactive Interneurons in the Rat Dentate Gyrus , 1996, The European journal of neuroscience.

[65]  Jozsef Csicsvari,et al.  Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity , 2008, Neuron.

[66]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[67]  Jozsi Z. Jalics,et al.  NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex , 2008, Proceedings of the National Academy of Sciences.

[68]  P. Somogyi,et al.  Role of Ionotropic Glutamate Receptors in Long-Term Potentiation in Rat Hippocampal CA1 Oriens-Lacunosum Moleculare Interneurons , 2009, The Journal of Neuroscience.

[69]  M. Todorova,et al.  Asynchronous release of GABA via tonic cannabinoid receptor activation at identified interneuron synapses in rat CA1 , 2010, The European journal of neuroscience.

[70]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.