Mechanochemical synthesis of complex ceramic oxides

Abstract: Mechanochemical synthesis has recently been recognized as a promising method for synthesizing a variety of technologically important ceramic oxides with complex compositions. This chapter begins by presenting some recent results related to the mechanisms and kinetics of mechanochemical reactions in oxide systems. In the second part of the chapter, attention is turned to the literature data on direct mechanochemical synthesis and the mechanochemical activation-based synthesis of a variety of complex oxides having different properties. This includes ferroelectric oxides and related materials, magnetic oxides and oxides with semiconducting and catalytic properties.

[1]  M. Kosec,et al.  Synthesis of a Li‐ and Ta‐Modified (K,Na)NbO3 Solid Solution by Mechanochemical Activation , 2008 .

[2]  Slavko Bernik,et al.  Microstructural and compositional aspects of ZnO-based varistor ceramics prepared by direct mixing of the constituent phases and high-energy milling , 2008 .

[3]  J. Chu,et al.  Progress and prospect for high temperature single-phased magnetic ferroelectrics , 2008 .

[4]  B. Stojanovic,et al.  Structure study of Bi4Ti3O12 produced via mechanochemically assisted synthesis , 2008 .

[5]  H. Abe,et al.  Rapid mechanochemical synthesis of fine barium titanate nanoparticles , 2008 .

[6]  P. Nordblad,et al.  Synthesis, nuclear structure, and magnetic properties of LaCr1−yMnyO3 (y = 0, 0.1, 0.2, and 0.3) , 2008 .

[7]  M. Kosec,et al.  The Mechanochemical Synthesis of NaNbO3 Using Different Ball‐Impact Energies , 2008 .

[8]  V. Nachbaur,et al.  Determination of milling parameters to obtain mechanosynthesized ZnFe2O4 , 2008 .

[9]  M. Mitrić,et al.  Spectroscopy study of Bi4Ti3O12 obtained from mechanically activated Bi2O3–TiO2 mixtures , 2008 .

[10]  M. Koubaa,et al.  Structural, magnetotransport, and magnetocaloric properties of La0.7Sr0.3−xAgxMnO3 perovskite manganites , 2008 .

[11]  J. Varela,et al.  Rietveld analysis of mechanically activated BaCO3–TiO2 system , 2008, Powder Diffraction.

[12]  V. Zyryanov,et al.  Mechanochemical synthesis of complex oxides , 2008 .

[13]  F. Boey,et al.  Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique , 2008 .

[14]  M. Mozaffari,et al.  Preparation of Mn–Zn ferrite nanocrystalline powders via mechanochemical processing , 2008 .

[15]  H. Abe,et al.  Effect of water content in powder mixture on mechanochemical reaction of LaMnO3 fine powder , 2008 .

[16]  P. Heitjans,et al.  Nanoscale spinel ferrites prepared by mechanochemical route , 2007 .

[17]  J. Varela,et al.  Characterization of bismuth titanate ceramics derived by mechanochemical synthesis , 2007 .

[18]  C. Rinaldi,et al.  Dielectric dispersion and magnetic properties of Ba-modified Pb(Fe1/2Nb1/2)O3 , 2007 .

[19]  A. Ponce,et al.  Mechanosynthesis of lanthanum manganite , 2007 .

[20]  P. Heitjans,et al.  Nanocrystalline Nickel Ferrite, NiFe2O4: Mechanosynthesis, Nonequilibrium Cation Distribution, Canted Spin Arrangement, and Magnetic Behavior , 2007 .

[21]  L. A. Patil,et al.  Studies on gas sensing performance of pure and modified barium strontium titanate thick film resistors , 2007 .

[22]  Wangzhou Shi,et al.  Microstructure and electrical properties of ZnO-based varistors prepared by high-energy ball milling , 2007 .

[23]  Slavko Bernik,et al.  ZnO varistors from intensively milled powders , 2007 .

[24]  J. Varela,et al.  Investigation on possibility of mechanochemical synthesis of CaTiO3 from different precursors , 2007 .

[25]  I. Szafraniak,et al.  Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis , 2007 .

[26]  M. Kosec,et al.  Pb(Mg1/3Nb2/3)O3–PbTiO3 thick films from mechanochemically synthesized powder , 2007 .

[27]  B. Stojanovic,et al.  Synthesis of Bi4Ti3O12 nanoparticles by mechanochemical reaction , 2007 .

[28]  M. Kosec,et al.  Formation of 0.65 Pb(Mg1/3Nb2/3)O3–0.35 PbTiO3 Using a High‐Energy Milling Process , 2007 .

[29]  M. Kosec,et al.  A study of the mechanochemical synthesis of NaNbO3 , 2007 .

[30]  P. Heitjans,et al.  NMR and impedance studies of nanocrystalline and amorphous ion conductors: lithium niobate as a model system. , 2007, Faraday discussions.

[31]  M. Kosec,et al.  The formation of a carbonato complex during the mechanochemical treatment of a Na2CO3–Nb2O5 mixture , 2006 .

[32]  A. Moure,et al.  Mechanosynthesis of the ferroelectric materials Ba2ANb5O15 (A = K, Na, Li) , 2006 .

[33]  V. Šepelák,et al.  Preparation of nanoscale MgFe2O4 via non-conventional mechanochemical route , 2006 .

[34]  M. Kosec,et al.  Mechano‐Synthesis of Lead–Magnesium–Niobate Ceramics , 2006 .

[35]  A. Paesano,et al.  Structural, microstructural and Mössbauer spectral study of the BiFe1−xMnxO3 mechanosynthesized system , 2006 .

[36]  L. Karanović,et al.  The evolution of structure induced by intensive milling in the system 2Bi2O3 · 3TiO2 , 2006 .

[37]  J. Eiras,et al.  Structural, Microstructural and Magnetic Properties of the High-Energy Ball Milled BiFeO3 and BiFe0.95 Mn0.05O3 Ferroelectromagnetic Compounds , 2006 .

[38]  L. A. Patil,et al.  Gas sensing properties of Cu and Cr activated BST thick films , 2006 .

[39]  I. Szafraniak,et al.  Characterization of PbTiO3 Nanopowders Obtained by Room Temperature Synthesis , 2006 .

[40]  P. Heitjans,et al.  Nonequilibrium Cation Distribution, Canted Spin Arrangement, and Enhanced Magnetization in Nanosized MgFe2O4 Prepared by a One-Step Mechanochemical Route , 2006 .

[41]  H. Abe,et al.  Mechanochemical synthesis of LaMnO3+δ fine powder assisted with water vapor , 2006 .

[42]  J. Varela,et al.  Mechanically activating formation of layered structured bismuth titanate , 2006 .

[43]  M. Kosec,et al.  The application of a milling map in the mechanochemical synthesis of ceramic oxides , 2006 .

[44]  Č. Jovalekić,et al.  Synthesis of MnFe2O4 nanoparticles by mechano- chemical reaction , 2006 .

[45]  E. Longo,et al.  Effect of processing route on the phase formation and properties of Bi4Ti3O12 ceramics , 2006 .

[46]  P. Heitjans,et al.  Mechanosynthesis of spinel ferrite nanoparticles followed by Mössbauer spectroscopy , 2007 .

[47]  E. Manova,et al.  Mössbauer study of nanodimensional nickel ferrite – mechanochemical synthesis and catalytic properties , 2007 .

[48]  I. Guedes,et al.  Study of the Aurivillius phases Bi4Srn−3TinO3n+3 (n=4, 5) synthesized by mechanochemical activation , 2005 .

[49]  T. Verdier,et al.  Mechanosynthesis of zinc ferrite in hardened steel vials: Influence of ZnO on the appearance of Fe(II) , 2005 .

[50]  A. Bell,et al.  Processing of Nanoparticulate Bismuth Ferrite Lead Titanate (BFPT) Through High‐Energy Milling , 2005 .

[51]  R. Choudhary,et al.  Nanocrystalline Zn Doped PZT Synthesized by Mechanical Alloying , 2005 .

[52]  A. Safari,et al.  Mechanically activated synthesis of PZT and its electromechanical properties , 2005 .

[53]  Haitao Huang,et al.  The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor , 2005 .

[54]  L. Pardo,et al.  Effect of mechanochemical activation on the synthesis of NaNbO3 and processing of environmentally friendly piezoceramics , 2005 .

[55]  V. Šepelák,et al.  Nanocrystalline Ferrites Prepared by Mechanical Activation and Mechanosynthesis , 2005 .

[56]  Jerzy Hanuza,et al.  Synthesis of disordered pyrochlores, A2Ti2O7 (A = Y, Gd and Dy), by mechanical milling of constituent oxides , 2005 .

[57]  M. Kosec,et al.  Mechanochemical synthesis of NaNbO3 , 2005 .

[58]  Jianhua Liu,et al.  Solid-state Reaction for Preparation of Lanthanum Manganite , 2005 .

[59]  V. Mitic,et al.  Mechanochemical synthesis of barium titanate , 2005 .

[60]  M. Kosec,et al.  Mechanochemical synthesis of NaNbO3, KNbO3 and K0.5Na0.5NbO3 , 2005 .

[61]  C. Tănăsoiu,et al.  Synthesis and piezoelectric properties of nanocrystalline PZT-based ceramics prepared by high energy ball milling process , 2004 .

[62]  A. Beitollahi,et al.  Phase formation study of PZT nanopowder by mechanical activation method at various conditions , 2004 .

[63]  F. Saito,et al.  Dependency of mechanochemical reactions forming complex oxides on the crystal structures of starting oxides , 2004 .

[64]  V. Sadykov,et al.  Mechanochemical synthesis and reactivity of La1 − xSrxFeO3 − y perovskites (0 ≤ x ≤ 1) , 2004 .

[65]  C. Gómez-Yáñez,et al.  Mechanical Activation of Spinel and Pyrochlore Phases in ZnO Based Varistors , 2004 .

[66]  Xiangchao Zhang,et al.  Synthesis of ZnFe2O4 nanocrystallites by mechanochemical reaction , 2004 .

[67]  R. Choudhary,et al.  Electrical propeties of Gd-doped PZT nanoceramic synthesized by high-energy ball milling , 2004 .

[68]  F. Saito,et al.  Synthesis of Perovskite-type lanthanum cobalt oxide nanoparticles by means of mechanochemical treatment , 2004 .

[69]  Huaming Yang,et al.  Formation of NiFe2O4 nanoparticles by mechanochemical reaction , 2004 .

[70]  L. Pardo,et al.  Sodium-lithium niobate piezoceramics prepared by mechanochemical activation assisted methods , 2004 .

[71]  O. K. Tan,et al.  A low temperature nano-structured SrTiO3 thick film oxygen gas sensor , 2004 .

[72]  L. Pardo,et al.  Sodium niobate ceramics prepared by mechanical activation assisted methods , 2004 .

[73]  J. Varela,et al.  Microstructural investigation of the PZT films prepared from the suspension of nanocrystalline powders , 2004 .

[74]  J. Varela,et al.  Mechanochemical synthesis of PZT powders , 2003 .

[75]  M. Castro,et al.  Lowering the synthesis temperature of high-purity BaTiO3 powders by modifications in the processing conditions , 2003 .

[76]  A. G. S. Filho,et al.  Structural properties of CaCu3Ti4O12 obtained by mechanical alloying , 2002 .

[77]  J. Xue,et al.  Functional ceramics of nanocrystallinity by mechanical activation , 2002 .

[78]  A. Castro,et al.  Study of fluorite phases in the system Bi2O3–Nb2O5–Ta2O5. Synthesis by mechanochemical activation assisted methods , 2002 .

[79]  Jun Ma,et al.  Barium titanate derived from mechanochemically activated powders , 2002 .

[80]  J. Xue,et al.  High temperature piezoelectric strontium bismuth titanate from mechanical activation of mixed oxides , 2002 .

[81]  F. Saito,et al.  Mechanochemical synthesis of LaCrO3 by grinding constituent oxides , 2002 .

[82]  V. Pavlović,et al.  Phase Transformations and Thermal Effects of Mechanically Activated BaCO 3 -TiO 2 System , 2002 .

[83]  Vladimir B. Pavlović,et al.  Barium titanate screen-printed thick films , 2002 .

[84]  Jimei Ma,et al.  Phase formation lead zirconate titanate via a high-energy ball milling process , 2002 .

[85]  V. P. Ivanov,et al.  Mechanochemical Synthesis and Catalytic Properties of the Calcium Ferrite Ca2Fe2O5 , 2002 .

[86]  G. Bruni,et al.  Effect of mechanical activation on the preparation of SrTiO3 and Sr2TiO4 ceramics from the solid state system SrCO3–TiO2 , 2001 .

[87]  L. Kong,et al.  Preparation of Bi4Ti3O12 ceramics via a high-energy ball milling process , 2001 .

[88]  V. Sadykov,et al.  Real structure and catalytic activity of La1−xSrxCoO3 perovskites , 2001 .

[89]  Jun Ma,et al.  Lead zirconate titanate ceramics derived from oxide mixture treated by a high-energy ball milling process , 2001 .

[90]  G. Bruni,et al.  Effect of mechanical milling on solid state formation of BaTiO3 from BaCO3–TiO2 (rutile) mixtures , 2001 .

[91]  N. Kosova,et al.  Mechanochemical way for preparation of disordered lithium–manganese spinel compounds , 2001 .

[92]  J. Lisoni,et al.  Synthesis of Ferroelectric Bi4Ti3O12 by Alternative Routes: Wet No-Coprecipitation Chemistry and Mechanochemical Activation , 2001 .

[93]  F. Saito,et al.  Effect of Fe2O3 crystallite size on its mechanochemical reaction with La2O3 to form LaFeO3 , 2001 .

[94]  V. P. Ivanov,et al.  Real structure and catalytic activity of La1−xCaxMnO3+δ perovskites , 2001 .

[95]  R. Street,et al.  MAGNETIC PROPERTIES OF ULTRAFINE MNFE2O4 POWDERS PREPARED BY MECHANOCHEMICAL PROCESSING , 2001 .

[96]  S. K. Pabi,et al.  A mathematical analysis of milling mechanics in a planetary ball mill , 2001 .

[97]  Jun Ma,et al.  REACTION SINTERING OF PARTIALLY REACTED SYSTEM FOR PZT CERAMICS VIA A HIGH-ENERGY BALL MILLING , 2001 .

[98]  W. Groen,et al.  Mechanochemical synthesis of BaTiO3, Bi0.5Na0.5TiO3 and Ba2NaNb5O15 dielectric ceramics , 2001 .

[99]  M. Castro,et al.  Synthesis of barium titanate improved by modifications in the kinetics of the solid state reaction , 2000 .

[100]  N. Kosova,et al.  Mechanochemical synthesis of LiMn2O4 cathode material for lithium batteries , 2000 .

[101]  J. Xue,et al.  Mechanically Activating Nucleation and Growth of Complex Perovskites , 2000 .

[102]  J. Ding,et al.  CoFe2O4 nanoparticles prepared by the mechanochemical method , 2000 .

[103]  John Wang,et al.  Synthesis of lead zirconate titanate from an amorphous precursor by mechanical activation , 2000 .

[104]  F. Saito,et al.  Mechanochemical synthesis of La0.7Sr0.3MnO3 by grinding constituent oxides , 2000 .

[105]  C. Gómez-Yáñez,et al.  Mechanical activation of the synthesis reaction of BaTiO3 from a mixture of BaCO3 and TiO2 powders , 2000 .

[106]  K. Sakurai,et al.  Formation of Yttrium Aluminum Perovskite and Yttrium Aluminum Garnet by Mechanical Solid-State Reaction , 2000 .

[107]  F. Saito,et al.  Mechanochemical synthesis of LaMnO3 from La2O3 and Mn2O3 powders , 2000 .

[108]  L. Kong,et al.  Preparation and characterization of Pb(Zr0.52Ti0.48)O3 ceramics from high-energy ball milling powders , 2000 .

[109]  J. Xue,et al.  Nanosized Barium Titanate Powder by Mechanical Activation , 2000 .

[110]  J. Xue,et al.  How different is mechanical activation from thermal activation?: A case study with PZN and PZN-based relaxors , 2000 .

[111]  M. Troccaz,et al.  Materials of Bi4Ti3O12 type for high temperature acoustic piezo-sensors , 1999 .

[112]  John Wang,et al.  Mechanochemical fabrication of single phase PMN of perovskite structure , 1999 .

[113]  P. Thomas,et al.  Formation of celsian from mechanically activated BaCO3-Al2O3-SiO2 mixtures , 1999 .

[114]  V. Šepelák,et al.  Magnetism of nanostructured mechanically activated and mechanosynthesized spinel ferrites , 1999 .

[115]  N. Kosova,et al.  State of Manganese Atoms during the Mechanochemical Synthesis of LiMn2O4 , 1999 .

[116]  J. Xue,et al.  Effects of mechanical activation on the sintering and dielectric properties of oxide-derived PZT , 1999 .

[117]  J. Xue,et al.  Mechanochemical Synthesis of Lead Zirconate Titanate from Mixed Oxides , 1999 .

[118]  V. Pavlović,et al.  Dielectric properties of barium-titanate sintered from tribophysically activated powders , 1999 .

[119]  J. Xue,et al.  Mechanochemical synthesis of nanosized lead titanate powders from mixed oxides , 1999 .

[120]  J. Xue,et al.  Synthesis of single phase 0.9Pb[(Zn0.6Mg0.4)1/3Nb2/3O3]–0.1PbTiO3 by mechanically activating mixed oxides , 1999 .

[121]  John Wang,et al.  Synthesizing 0.9PZN–0.1BT by mechanically activating mixed oxides , 1999 .

[122]  S. Malik,et al.  X-ray absorption, neutron diffraction, and Mössbauer effect studies of MnZn–ferrite processed through high-energy ball milling , 1999 .

[123]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[124]  W. Kaczmarek,et al.  Synthesis of SrFeO2.5 from Mechanically Activated Reactants , 1999 .

[125]  M. Vallet‐Regí,et al.  Chemical Homogeneity of Nanocrystalline Zn–Mn Spinel Ferrites Obtained by High-Energy Ball Milling , 1998 .

[126]  N. Welham Mechanically induced reaction between alkaline earth metal oxides and TiO_2 , 1998 .

[127]  A. Hernandes,et al.  Piezoelectric lithium niobate obtained by mechanical alloying , 1998 .

[128]  V. Epelak High-temperature reactivity of mechanosynthesized zinc ferrite , 1997 .

[129]  M. Mitrić,et al.  Mechanochemical synthesis of NiFe2O4 ferrite , 1995 .

[130]  M. Abdellaoui,et al.  The physics of mechanical alloying in a planetary ball mill: Mathematical treatment , 1995 .

[131]  A. Streletskii,et al.  KINETICS AND MECHANISM OF MECHANOCHEMICAL SYNTHESIS IN THE PBO-NB2O5 SYSTEM , 1995 .

[132]  N. Minh Ceramic Fuel Cells , 1993 .

[133]  R. Ayala,et al.  Characterization and long-range reactivity of zinc ferrite in high-temperature desulfurization processes , 1991 .

[134]  D. W. Johnson,et al.  Perovskite Oxides: Materials Science in Catalysis , 1977, Science.

[135]  Y. Kimura Formation of Zinc Ferrite by Explosive Compression , 1963 .