Goodness of fit test for isotonic regression

We consider the problem of hypothesis testing within a monotone regression model. We propose a new test of the hypothesis H 0 : “ ƒ = ƒ 0 ” against the composite alternative H a : “ ƒ ≠ ƒ 0 ” under the assumption that the true regression function f is decreasing. The test statistic is based on the -distance between the isotonic estimator of f and the function f 0 , since it is known that a properly centered and normalized version of this distance is asymptotically standard normally distributed under H 0 . We study the asymptotic power of the test under alternatives that converge to the null hypothesis.

[1]  V. Spokoiny,et al.  Minimax Nonparametric Hypothesis Testing: The Case of an Inhomogeneous Alternative , 1999 .

[2]  Winfried Stute,et al.  Nonparametric model checks for regression , 1997 .

[3]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[4]  Jeffrey D. Hart,et al.  Kernel Regression When the Boundary Region is Large, with an Application to Testing the Adequacy of Polynomial Models , 1992 .

[5]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[6]  Thomas A. Severini,et al.  Diagnostics for Assessing Regression Models , 1991 .

[7]  J. Hartigan,et al.  An omnibus test for departures from constant mean , 1990 .

[8]  P. Hall,et al.  Asymptotically optimal difference-based estimation of variance in nonparametric regression , 1990 .

[9]  Clifford H. Spiegelman,et al.  Testing the Goodness of Fit of a Linear Model via Nonparametric Regression Techniques , 1990 .

[10]  P. Groeneboom Brownian motion with a parabolic drift and airy functions , 1989 .

[11]  T. Gasser,et al.  Residual variance and residual pattern in nonlinear regression , 1986 .

[12]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[13]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[14]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[15]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .

[16]  H. D. Brunk On the Estimation of Parameters Restricted by Inequalities , 1958 .

[17]  A. Tocquet Construction et etude de tests en regression : 1. correction du rapport de vraisemblance par approximation de laplace en regression non-lineaire, 2. test d'adequation en regression isotonique a partir d'une asymptotique des fluctuations de la distance l#1 , 1998 .

[18]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[19]  R. Olshen,et al.  Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer , 1985 .

[20]  P. Groeneboom Estimating a monotone density , 1984 .