Dynamic programming for graphs on surfaces

We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2O(kṡlog k) ṡ n steps. Our approach combines tools from topological graph theory and analytic combinatorics. In particular, we introduce a new type of branch decomposition called surface cut decomposition, generalizing sphere cut decompositions of planar graphs, which has nice combinatorial properties. Namely, the number of partial solutions that can be arranged on a surface cut decomposition can be upper-bounded by the number of noncrossing partitions on surfaces with boundary. It follows that partial solutions can be represented by a single-exponential (in the branchwidth k) number of configurations. This proves that, when applied on surface cut decompositions, dynamic programming runs in 2O(k) ṡ n steps. That way, we considerably extend the class of problems that can be solved in running times with a single-exponential dependence on branchwidth and unify/improve most previous results in this direction.

[1]  Zhi-Cheng Gao The number of rooted triangular maps on a surface , 1991, J. Comb. Theory, Ser. B.

[2]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Dimitrios M. Thilikos,et al.  Dynamic Programming for H-minor-free Graphs , 2012, COCOON.

[5]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[6]  Rolf Niedermeier,et al.  INTRODUCTION TO FIXED-PARAMETER ALGORITHMS , 2006 .

[7]  Dimitrios M. Thilikos,et al.  Asymptotic enumeration of non-crossing partitions on surfaces , 2013, Discret. Math..

[8]  Dimitrios M. Thilikos,et al.  Fast Parameterized Algorithms for Graphs on Surfaces: Linear Kernel and Exponential Speed-Up , 2004, ICALP.

[9]  Vikraman Arvind,et al.  Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size , 2008, APPROX-RANDOM.

[10]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[11]  Dimitrios M. Thilikos,et al.  Dynamic Programming for Graphs on Surfaces , 2010, ICALP.

[12]  Dániel Marx,et al.  Slightly superexponential parameterized problems , 2011, SODA '11.

[13]  Dimitrios M. Thilikos,et al.  Fast Subexponential Algorithm for Non-local Problems on Graphs of Bounded Genus , 2006, SWAT.

[14]  Dimitrios M. Thilikos,et al.  Catalan structures and dynamic programming in H-minor-free graphs , 2008, SODA '08.

[15]  Erik D. Demaine,et al.  The Bidimensional Theory of Bounded-Genus Graphs , 2004, SIAM J. Discret. Math..

[16]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[17]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[18]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[19]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions , 2010, Algorithmica.

[20]  Bojan Mohar,et al.  Finding Shortest Non-Separating and Non-Contractible Cycles for Topologically Embedded Graphs , 2007, Discret. Comput. Geom..

[21]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[22]  Robert Cori Indecomposable permutations, hypermaps and labeled Dyck paths , 2009, J. Comb. Theory, Ser. A.

[23]  B. Mohar,et al.  Graph Minors , 2009 .

[24]  Dimitrios M. Thilikos,et al.  Subexponential parameterized algorithms for degree-constrained subgraph problems on planar graphs , 2010, J. Discrete Algorithms.

[25]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[26]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[27]  Dimitrios M. Thilikos,et al.  Faster parameterized algorithms for minor containment , 2010, Theor. Comput. Sci..

[28]  Philippe Flajolet,et al.  Analytic combinatorics of non-crossing configurations , 1999, Discret. Math..

[29]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[30]  Bruce A. Reed,et al.  A Simpler Linear Time Algorithm for Embedding Graphs into an Arbitrary Surface and the Genus of Graphs of Bounded Tree-Width , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[31]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[32]  Bojan Mohar,et al.  A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface , 1999, SIAM J. Discret. Math..

[33]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[34]  Hans L. Bodlaender,et al.  Dynamic Programming on Graphs with Bounded Treewidth , 1988, ICALP.

[35]  Dimitrios M. Thilikos,et al.  Subexponential Parameterized Algorithms for Bounded-Degree Connected Subgraph Problems on Planar Graphs , 2009, Electron. Notes Discret. Math..

[36]  Eyal Amir,et al.  Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.

[37]  Erik D. Demaine,et al.  The Bidimensional Theory of Bounded-Genus Graphs , 2006, SIAM J. Discret. Math..

[38]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[39]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[40]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[41]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[42]  Paul D. Seymour,et al.  Graph Minors .XII. Distance on a Surface , 1995, J. Comb. Theory, Ser. B.

[43]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[44]  Carsten Thomassen,et al.  The Graph Genus Problem is NP-Complete , 1989, J. Algorithms.

[45]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[46]  Dimitrios M. Thilikos,et al.  Subexponential parameterized algorithms , 2008, Comput. Sci. Rev..

[47]  Satish Rao,et al.  Computing vertex connectivity: new bounds from old techniques , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[48]  Paul D. Seymour,et al.  Graph Minors: XVII. Taming a Vortex , 1999, J. Comb. Theory, Ser. B.

[49]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[50]  David Eppstein,et al.  Dynamic generators of topologically embedded graphs , 2002, SODA '03.

[51]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[52]  Liming Cai,et al.  On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..

[53]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs: Definable Sets of Finite Graphs , 1988, WG.

[54]  Dimitrios M. Thilikos,et al.  On self duality of pathwidth in polyhedral graph embeddings , 2007, J. Graph Theory.

[55]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[56]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions , 2005, ESA.

[57]  Satish Rao,et al.  Computing Vertex Connectivity: New Bounds from Old Techniques , 2000, J. Algorithms.