Historical Overview of the Kepler Conjecture
暂无分享,去创建一个
[1] H. F. Blichfeldt. The minimum value of quadratic forms, and the closest packing of spheres , 1929 .
[2] Douglas J. Muder,et al. Putting the best face on a Voronoi polyhedron , 1988 .
[3] C. A. Rogers,et al. Packing and Covering , 1964 .
[4] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[5] T. Hales. The sphere packing problem , 1992 .
[6] János Pach,et al. Combinatorial Geometry , 2012 .
[7] F. Browder. Mathematical developments arising from Hilbert problems , 1976 .
[8] John Leech,et al. The Problem of the Thirteen Spheres , 1956, The Mathematical Gazette.
[9] H. F. Blichfeldt. The minimum values of positive quadratic forms in six, seven and eight variables , 1935 .
[10] Thomas C. Hales. Some Algorithms Arising in the Proof of the Kepler Conjecture , 2002 .
[11] Wlodzimierz Kuperberg,et al. Maximum density space packing with parallel strings of spheres , 1991, Discret. Comput. Geom..
[12] J. Kepler,et al. The Six-Cornered Snowflake , 1966 .
[13] L. Fejes. Über die dichteste Kugellagerung , 1942 .
[14] N. S. Barnett,et al. Private communication , 1969 .
[15] Sphere Packings in 3 Dimensions , 2002, math/0205208.
[16] Robert A. Rankin,et al. On the Closest Packing of Spheres in n Dimensions , 1947 .
[17] T. Hales. The Kepler conjecture , 1998, math/9811078.
[18] Panos M. Pardalos,et al. Introduction to Global Optimization , 2000, Introduction to Global Optimization.
[19] A. Korkine,et al. Sur les formes quadratiques , 1873 .
[20] C. A. Rogers. The Packing of Equal Spheres , 1958 .
[21] Thomas C. Hales,et al. A Proof of the Dodecahedral Conjecture , 1998, math/9811079.
[22] Wu-Yi Hsiang,et al. A Rejoinder to Hales’s Article , 1995 .
[23] J. Moon,et al. Some packing and covering theorems , 1967 .
[24] L. Marton,et al. Atomism in England from Hariot to Newton , 1967 .
[25] H. F. Blichfeldt. Report on the theory of the geometry of numbers , 1919 .
[26] G. Zolotareff,et al. Sur les formes quadratiques positives , 1877 .
[27] János Pach,et al. Research problems in discrete geometry , 2005 .
[28] N. J. A. Sloane,et al. What are all the best sphere packings in low dimensions? , 1995, Discret. Comput. Geom..
[29] Karl Sigmund,et al. Kepler’s conjecture: How some of the greatest minds in history helped solve one of the oldest math problems in the world , 2004 .
[30] Thomas C. Hales,et al. Remarks on the density of sphere packings in three dimensions , 1993, Comb..
[31] P. Pardalos,et al. Handbook of global optimization , 1995 .
[32] Douglas J. Muder,et al. A new bound on the local density of sphere packings , 1993, Discret. Comput. Geom..
[33] N. J. A. Sloane,et al. Minimal-energy clusters of hard spheres , 1995, Discret. Comput. Geom..
[34] Thomas C. Hales,et al. A Formulation of the Kepler Conjecture , 2006, Discret. Comput. Geom..
[35] Henry Cohn,et al. The densest lattice in twenty-four dimensions , 2004, math/0408174.
[36] T. Hales. The status of the kepler conjecture , 1994 .
[37] W. Hsiang. ON THE SPHERE PACKING PROBLEM AND THE PROOF OF KEPLER'S CONJECTURE , 1993 .
[38] Wlodzimierz Kuperberg,et al. Maximum density space packing with congruent circular cylinders of infinite length , 1990 .
[39] Thomas C. Hales. Sphere Packings, II , 1997, Discret. Comput. Geom..
[40] J. H. Lindsey,et al. Sphere packing in R 3 , 1986 .
[41] W. Hsiang. Least Action Principle of Crystal Formation of Dense Packing Type and Kepler's Conjecture , 2002 .
[42] J. Shirley,et al. Thomas Harriot, a biography , 1984 .
[43] Beniamino Segre,et al. On the Densest Packing of Circles , 1944 .
[44] B. L. Waerden,et al. Das Problem der dreizehn Kugeln , 1952 .
[45] L. Tóth. Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .
[46] J. Pach,et al. Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.
[47] K. Bezdek,et al. Isoperimetric Inequalities and the Dodecahedral Conjecture , 1997 .