Historical Overview of the Kepler Conjecture

AbstractThis paper is the first in a series of six papers devoted to the proof of the Kepler conjecture, which asserts that no packing of congruent balls in three dimensions has density greater than the face-centered cubic packing. After some preliminary comments about the face-centered cubic and hexagonal close packings, the history of the Kepler problem is described, including a discussion of various published bounds on the density of sphere packings. There is also a general historical discussion of various proof strategies that have been tried with this problem.

[1]  H. F. Blichfeldt The minimum value of quadratic forms, and the closest packing of spheres , 1929 .

[2]  Douglas J. Muder,et al.  Putting the best face on a Voronoi polyhedron , 1988 .

[3]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[4]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[5]  T. Hales The sphere packing problem , 1992 .

[6]  János Pach,et al.  Combinatorial Geometry , 2012 .

[7]  F. Browder Mathematical developments arising from Hilbert problems , 1976 .

[8]  John Leech,et al.  The Problem of the Thirteen Spheres , 1956, The Mathematical Gazette.

[9]  H. F. Blichfeldt The minimum values of positive quadratic forms in six, seven and eight variables , 1935 .

[10]  Thomas C. Hales Some Algorithms Arising in the Proof of the Kepler Conjecture , 2002 .

[11]  Wlodzimierz Kuperberg,et al.  Maximum density space packing with parallel strings of spheres , 1991, Discret. Comput. Geom..

[12]  J. Kepler,et al.  The Six-Cornered Snowflake , 1966 .

[13]  L. Fejes Über die dichteste Kugellagerung , 1942 .

[14]  N. S. Barnett,et al.  Private communication , 1969 .

[15]  Sphere Packings in 3 Dimensions , 2002, math/0205208.

[16]  Robert A. Rankin,et al.  On the Closest Packing of Spheres in n Dimensions , 1947 .

[17]  T. Hales The Kepler conjecture , 1998, math/9811078.

[18]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[19]  A. Korkine,et al.  Sur les formes quadratiques , 1873 .

[20]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[21]  Thomas C. Hales,et al.  A Proof of the Dodecahedral Conjecture , 1998, math/9811079.

[22]  Wu-Yi Hsiang,et al.  A Rejoinder to Hales’s Article , 1995 .

[23]  J. Moon,et al.  Some packing and covering theorems , 1967 .

[24]  L. Marton,et al.  Atomism in England from Hariot to Newton , 1967 .

[25]  H. F. Blichfeldt Report on the theory of the geometry of numbers , 1919 .

[26]  G. Zolotareff,et al.  Sur les formes quadratiques positives , 1877 .

[27]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[28]  N. J. A. Sloane,et al.  What are all the best sphere packings in low dimensions? , 1995, Discret. Comput. Geom..

[29]  Karl Sigmund,et al.  Kepler’s conjecture: How some of the greatest minds in history helped solve one of the oldest math problems in the world , 2004 .

[30]  Thomas C. Hales,et al.  Remarks on the density of sphere packings in three dimensions , 1993, Comb..

[31]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[32]  Douglas J. Muder,et al.  A new bound on the local density of sphere packings , 1993, Discret. Comput. Geom..

[33]  N. J. A. Sloane,et al.  Minimal-energy clusters of hard spheres , 1995, Discret. Comput. Geom..

[34]  Thomas C. Hales,et al.  A Formulation of the Kepler Conjecture , 2006, Discret. Comput. Geom..

[35]  Henry Cohn,et al.  The densest lattice in twenty-four dimensions , 2004, math/0408174.

[36]  T. Hales The status of the kepler conjecture , 1994 .

[37]  W. Hsiang ON THE SPHERE PACKING PROBLEM AND THE PROOF OF KEPLER'S CONJECTURE , 1993 .

[38]  Wlodzimierz Kuperberg,et al.  Maximum density space packing with congruent circular cylinders of infinite length , 1990 .

[39]  Thomas C. Hales Sphere Packings, II , 1997, Discret. Comput. Geom..

[40]  J. H. Lindsey,et al.  Sphere packing in R 3 , 1986 .

[41]  W. Hsiang Least Action Principle of Crystal Formation of Dense Packing Type and Kepler's Conjecture , 2002 .

[42]  J. Shirley,et al.  Thomas Harriot, a biography , 1984 .

[43]  Beniamino Segre,et al.  On the Densest Packing of Circles , 1944 .

[44]  B. L. Waerden,et al.  Das Problem der dreizehn Kugeln , 1952 .

[45]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[46]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[47]  K. Bezdek,et al.  Isoperimetric Inequalities and the Dodecahedral Conjecture , 1997 .