Many objective visual analytics: rethinking the design of complex engineered systems

Many cognitive and computational challenges accompany the design of complex engineered systems. This study proposes the many-objective visual analytics (MOVA) framework as a new approach to the design of complex engineered systems. MOVA emphasizes learning through problem reformulation, enabled by visual analytics and many-objective search. This study demonstrates insights gained by evolving the formulation of a General Aviation Aircraft (GAA) product family design problem. This problem’s considerable complexity and difficulty, along with a history encompassing several formulations, make it well-suited to demonstrate the MOVA framework. The MOVA framework results compare a single objective, a two objective, and a ten objective formulation for optimizing the GAA product family. Highly interactive visual analytics are exploited to demonstrate how decision biases can arise for lower dimensional, highly aggregated problem formulations.

[1]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[2]  Frank Neumann,et al.  Do additional objectives make a problem harder? , 2007, GECCO '07.

[3]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[4]  Daniel A. Keim,et al.  Mastering the Information Age - Solving Problems with Visual Analytics , 2010 .

[5]  Kenneth W. English,et al.  Visual Dependency Structure Matrix for Multidisciplinary Design Optimization Tradeoff Studies , 2008, J. Aerosp. Comput. Inf. Commun..

[6]  Joseph R. Kasprzyk,et al.  Many-objective de Novo water supply portfolio planning under deep uncertainty , 2012, Environ. Model. Softw..

[7]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[8]  Joaquim R. R. A. Martins,et al.  Multidisciplinary Design Optimization for Complex Engineered Systems: Report From a National Science Foundation Workshop , 2011 .

[9]  João C. N. Clímaco,et al.  A critical reflection on optimal decision , 2004, Eur. J. Oper. Res..

[10]  Joseph R. Kasprzyk,et al.  Evolutionary multiobjective optimization in water resources: The past, present, and future , 2012 .

[11]  P. Reed,et al.  Managing population and drought risks using many‐objective water portfolio planning under uncertainty , 2009 .

[12]  T. L. Galloway,et al.  GASP- GENERAL AVIATION SYNTHESIS PROGRAM , 1994 .

[13]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[14]  Bradley Jones,et al.  JMP statistical discovery software , 2011 .

[15]  Bernard Roy,et al.  Problems and methods with multiple objective functions , 1971, Math. Program..

[16]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[17]  Alfred Inselberg,et al.  Multidimensional detective , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[18]  Farrokh Mistree,et al.  Balancing Commonality and Performance within the Concurrent Design of Multiple Products in a Product Family , 2001, Concurr. Eng. Res. Appl..

[19]  Olivier Teytaud,et al.  On the Hardness of Offline Multi-objective Optimization , 2007, Evolutionary Computation.

[20]  Charles J. Hitch,et al.  On the Choice of Objectives in Systems Studies , 1960 .

[21]  Timothy W. Simpson,et al.  Development of a design process for realizing open engineering systems , 1995 .

[22]  Raphael T. Haftka,et al.  Structural optimization complexity: what has Moore’s law done for us? , 2004 .

[23]  O. Teytaud How entropy-theorems can show that approximating high-dim Pareto-fronts is too hard , 2006 .

[24]  Patrick M. Reed,et al.  Many-objective reconfiguration of operational satellite constellations with the Large-Cluster Epsilon Non-dominated Sorting Genetic Algorithm-II , 2009, 2009 IEEE Congress on Evolutionary Computation.

[25]  S. Kobayashi,et al.  Multi-parental extension of the unimodal normal distribution crossover for real-coded genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[26]  Timothy W. Simpson,et al.  Design Space Visualization and Its Application to a Design by Shopping Paradigm , 2003, DAC 2003.

[27]  Anna-Maria Rivas McGowan,et al.  Design of Complex Engineered Systems , 2010 .

[28]  M. Yamamura,et al.  Multi-parent recombination with simplex crossover in real coded genetic algorithms , 1999 .

[29]  Timoleon Kipouros,et al.  Use of Parallel Coordinates for Post-Analyses of Multi-Objective Aerodynamic Design Optimisation in Turbomachinery , 2008 .

[30]  John M. Flach,et al.  MGA: a decision support system for complex, incompletely defined problems , 1990, IEEE Trans. Syst. Man Cybern..

[31]  Eliot Winer,et al.  Development of visual design steering as an aid in large-scale multidisciplinary design optimization. Part I: method development , 2002 .

[32]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[33]  P. Reed,et al.  A computational scaling analysis of multiobjective evolutionary algorithms in long-term groundwater monitoring applications , 2007 .

[34]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[35]  Ashwin P. Gurnani,et al.  An Approach to Robust Multiattribute Concept Selection , 2003, DAC 2003.

[36]  R. Hogarth Beyond discrete biases: Functional and dysfunctional aspects of judgmental heuristics. , 1981 .

[37]  Patrick M. Reed,et al.  Diagnostic assessment of the borg MOEA for many-objective product family design problems , 2012, 2012 IEEE Congress on Evolutionary Computation.

[38]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[39]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[40]  Alexis Tsoukiàs,et al.  From decision theory to decision aiding methodology , 2008, Eur. J. Oper. Res..

[41]  Kemper Lewis,et al.  Hyper-Radial Visualization for Multi-objective Decision-making Support Under Uncertainty Using Preference Ranges: The PRUF Method , 2008 .

[42]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[43]  Patrick M. Reed,et al.  Many‐objective groundwater monitoring network design using bias‐aware ensemble Kalman filtering, evolutionary optimization, and visual analytics , 2011 .

[44]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[45]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[46]  Kemper Lewis,et al.  A Multidimensional Visualization Interface to Aid in Trade-off Decisions During the Solution of Coupled Subsystems Under Uncertainty , 2006, J. Comput. Inf. Sci. Eng..

[47]  Patrick M. Reed,et al.  A framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization (VIDEO) , 2007, Environ. Model. Softw..

[48]  Milan Zeleny,et al.  Optimal system design with multiple criteria: De Novo programming approach , 1986 .

[49]  Patrick M. Reed,et al.  The Value of Online Adaptive Search: A Performance Comparison of NSGAII, epsilon-NSGAII and epsilonMOEA , 2005, EMO.

[50]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[51]  Daniel P. Raymer,et al.  Aircraft Design: A Conceptual Approach , 1989 .

[52]  Timothy W. Simpson,et al.  Introduction of a product family penalty function using physical programming , 2000 .

[53]  Patrick M. Reed,et al.  Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization , 2012, Evolutionary Computation.

[54]  Timothy W. Simpson,et al.  Assessing Variable Levels of Platform Commonality Within a Product Family Using a Multiobjective Genetic Algorithm , 2004, Concurr. Eng. Res. Appl..

[55]  Richard J. Balling,et al.  Multiobjective Urban Planning Using Genetic Algorithm , 1999 .

[56]  Patrick M. Reed,et al.  Many-Objective Evolutionary Optimisation and Visual Analytics for Product Family Design , 2011, Multi-objective Evolutionary Optimisation for Product Design and Manufacturing.

[57]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[58]  Timothy W. Simpson,et al.  A Product Family Optimization Approach Using Multidimensional Data Visualization , 2010 .

[59]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[60]  M. Franssen Arrow’s theorem, multi-criteria decision problems and multi-attribute preferences in engineering design , 2005 .

[61]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[62]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[63]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[64]  T. Saaty How to Make a Decision: The Analytic Hierarchy Process , 1990 .