Characterization and Modeling of Breakdown Probability in Sub-Micrometer CMOS SPADs

This paper presents the characterization of two different single-photon avalanche diodes fabricated in a standard 0.15 μm CMOS process and the modeling of their breakdown probability. The first device is based on a p+/nwell abrupt junction, while the second one has a pwell/n-iso diffused junction. Breakdown voltage and breakdown probability are modeled using both local and dead-space models. While the two models are in agreement for the prediction of breakdown voltage, it is shown that the local model largely underestimates the breakdown probability with respect to experimental results. On the contrary, the voltage and wavelength dependence of breakdown probability can be correctly predicted using the dead-space model.

[1]  Joe C. Campbell,et al.  Analysis of breakdown probabilities in avalanche photodiodes using a history-dependent analytical model , 2003 .

[2]  E. Charbon,et al.  A low-noise single-photon detector implemented in a 130 nm CMOS imaging process , 2009, ESSDERC 2009.

[3]  P.-A. Besse,et al.  Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology , 2003 .

[4]  Cristiano Niclass,et al.  A 100m-range 10-frame/s 340×96-pixel time-of-flight depth sensor in 0.18μm CMOS , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[5]  C. R. Crowell,et al.  Threshold energy effect on avalanche breakdown voltage in semiconductor junctions , 1975 .

[6]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  C. Niclass,et al.  A 100-m Range 10-Frame/s 340 $\,\times\, $96-Pixel Time-of-Flight Depth Sensor in 0.18-$\mu\hbox{m}$ CMOS , 2013, IEEE Journal of Solid-State Circuits.

[9]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .

[10]  Edoardo Charbon,et al.  A 128x128 Single-Photon Imager with on-Chip Column-Level 97ps 10bit Time-to-Digital-Converter Array , 2008, ISSCC 2008.

[11]  David Stoppa,et al.  Low-noise single Photon Avalanche Diodes in 0.15 μm CMOS technology , 2011, 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[12]  D. Stoppa,et al.  Low-Noise CMOS single-photon avalanche diodes with 32 ns dead time , 2007, ESSDERC 2007 - 37th European Solid State Device Research Conference.

[13]  J. Nissinen,et al.  A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy , 2011, 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[14]  R. J. McIntyre,et al.  On the avalanche initiation probability of avalanche diodes above the breakdown voltage , 1973 .

[15]  Alberto Tosi,et al.  Low-noise and large-area CMOS SPADs with timing response free from slow tails , 2012, 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[16]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .

[17]  W. N. Grant Electron and hole ionization rates in epitaxial silicon at high electric fields , 1973 .

[18]  N. Massari,et al.  SPAD Image Sensor With Analog Counting Pixel for Time-Resolved Fluorescence Detection , 2013, IEEE Transactions on Electron Devices.

[19]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[20]  Edoardo Charbon,et al.  7 A 160 × 128 Single-Photon Image Sensor with On-Pixel 55 ps 10 b Time-to-Digital Converter , 2011 .

[21]  J A Richardson,et al.  Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology , 2011, IEEE Transactions on Electron Devices.

[22]  David Stoppa,et al.  Avalanche Photodiodes in Submicron CMOS Technologies for High-Sensitivity Imaging , 2011 .

[23]  W. Oldham,et al.  Triggering phenomena in avalanche diodes , 1972 .

[24]  L. Grant,et al.  A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology , 2012, IEEE Electron Device Letters.

[25]  R. V. Overstraeten,et al.  Measurement of the ionization rates in diffused silicon p-n junctions , 1970 .

[26]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes , 1992 .

[27]  Matteo Perenzoni,et al.  A Fully Digital 8$\,\times\,$16 SiPM Array for PET Applications With Per-Pixel TDCs and Real-Time Energy Output , 2014, IEEE Journal of Solid-State Circuits.

[28]  Bahaa E. A. Saleh,et al.  Breakdown probabilities for thin heterostructure avalanche photodiodes , 2003 .

[29]  Angelo Gulinatti,et al.  Modeling photon detection efficiency and temporal response of single photon avalanche diodes , 2009, Optics + Optoelectronics.