OBJECTIVE
We present the design, reliability, face, content and construct validity testing of a virtual reality simulator for transrectal ultrasound (TRUS), which allows doctors-in-training to perform multiple different biopsy schemes.
METHODS
This biopsy system design uses a regular "end-firing" TRUS probe. Movements of the probe are tracked with a micro-magnetic sensor to dynamically slice through a phantom patient's 3D prostate volume to provide real-time continuous TRUS views. 3D TRUS scans during prostate biopsy clinics were recorded. Intrinsic reliability was assessed by comparing the left side of the prostate to the right side of the prostate for each biopsy. A content and face validity questionnaire was administered to 26 doctors to assess the simulator. Construct validity was assessed by comparing notes from experts and novices with regards to the time taken and the accuracy of each biopsy.
RESULTS
Imaging data from 50 patients were integrated into the simulator. The completed VR TRUS simulator uses real patient images, and is able to provide simulation for 50 cases, with a haptic interface that uses a standard TRUS probe and biopsy needle. Intrinsic reliability was successfully demonstrated by comparing results from the left and right sides of the prostate. Face and content validity respondents noted the realism of the simulator, and its appropriateness as a teaching model. The simulator was able to distinguish between experts and novices during construct validity testing.
CONCLUSIONS
A virtual reality TRUS simulator has successfully been created. It has promising face, content and construct validity results.