Metodologías empleadas para el estudio de la erosión edáfica en incendios forestales

One of the most obvious environmental consequences of the wildfires is the modification of the vegetation cover and litter, it developed variations in the hydro-geomorphological behavior on scenarios affected by the fire. Wildfires in semiarid areas increased runoff rates and erosion after fire. Therefore, in semiarid areas replanted with coniferous forests, scrub steppe, degraded soils, steep slopes, soft lithologies and faster storms will result in flash floods or sudden flows after wildfires. The fire of August 2008 in the Zuera Mountains (Zaragoza, Spain) affected more than 2,000 hectares of pine forest, on calcareous soils. The storms after the wildfire developed flash floods in alluvial fans around 68 m 2 . Some of these alluvial fans have been monitored using erosion needles and laser scanner; soil characterization and vegetation studies with linear transects; infiltrations; rainfall simulations; and water repellency were measured. The results to apply different techniques shown a sediment accumulation around 1 m thick in alluvial fans; high infiltration rates in soils burned covered with ashes; less runoff rates in soils covered with wood-chip; successful regeneration in northern slopes; and a mild water repellency in these soils.

[1]  D. Badía,et al.  Can ash control infiltration rate after burning? An example in burned calcareous and gypseous soils in the Ebro Basin (NE Spain) , 2015 .

[2]  J. D. L. Riva,et al.  Estimación de variables dasométricas a partir de datos LiDAR PNOA en masas regulares de Pinus halepensis Mill. , 2014 .

[3]  M. Seeger,et al.  Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain) , 2014 .

[4]  J. A. Gomez,et al.  European small portable rainfall simulators: A comparison of rainfall characteristics , 2013 .

[5]  A. Cerda,et al.  The contrasted response of ash to wetting , 2013 .

[6]  M. Seeger,et al.  Thermal shock and splash effects on burned gypseous soils from the Ebro Basin , 2013 .

[7]  C. J. Álvarez,et al.  Effectiveness of wood chips cover at reducing erosion in two contrasted burnt soils , 2013 .

[8]  D. Badía,et al.  Influence of slope and parent rock on soil genesis and classification in semiarid mountainous environments , 2013 .

[9]  J. Moody,et al.  Hydrologic conditions controlling runoff generation immediately after wildfire , 2012 .

[10]  A. Jordán,et al.  Fire effects on soil aggregation: A review , 2011 .

[11]  R. Shakesby,et al.  Post-wildfire soil erosion in the Mediterranean: Review and future research directions , 2011 .

[12]  C. Fernández,et al.  Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain) , 2011 .

[13]  Jorge Angás Pajas,et al.  Valorización y difusión del patrimonio arqueológico mediante un entorno web 3D. Documentación de Santa María de Iguacel (XI d.C.) mediante láser escáner 3D. , 2010 .

[14]  A. Jordán,et al.  Re‐establishment of soil water repellency after destruction by intense burning in a Mediterranean heathland (SW Spain) , 2010 .

[15]  David A. Kinner,et al.  Linking hydraulic properties of fire-affected soils to infiltration and water repellency , 2009 .

[16]  M. Bodí,et al.  Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin , 2009 .

[17]  J. Keeley Fire intensity, fire severity and burn severity: a brief review and suggested usage , 2009 .

[18]  S. Woods,et al.  The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA , 2008 .

[19]  A. Cerda,et al.  The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period , 2008 .

[20]  Peter R. Robichaud,et al.  Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the western United States , 2008 .

[21]  J. Ries,et al.  Permanence of soil surface crusts on abandoned farmland in the Central Ebro Basin/Spain , 2008 .

[22]  J. Pausas,et al.  Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin) , 2004 .

[23]  D. Badía,et al.  Seeding and Mulching Treatments as Conservation Measures of Two Burned Soils in the Central Ebro Valley, NE Spain , 2000 .

[24]  Daniel G. Neary,et al.  Fire effects on belowground sustainability: a review and synthesis , 1999 .

[25]  Artemi Cerdà,et al.  Design and operation of a small and portable rainfall simulator for rugged terrain , 1997 .

[26]  V. Vallejo,et al.  Mulching treatment for postfire soil conservation in a semiarid ecosystem , 1996 .

[27]  G. Benito,et al.  Erosion rates in badland areas of the central Ebro Basin (NE-Spain) , 1992 .

[28]  R. Moreira,et al.  Evaluation of the U.S.L.E. for the prediction of erosion in burnt forest areas in Galicia (N.W. Spain) , 1987 .

[29]  M. Arnedo,et al.  Regeneración vegetal tras un incendio en ámbitos subhúmedos y semiáridos de la Depresión del Ebro , 2015 .

[30]  J. M. García-Ruiz,et al.  Utilización de técnicas de láser escáner terrestre en la monitorización de procesos geomorfológicos en una zona acarcavada , 2014 .

[31]  D. Peterson Fire Effects on Soils and Restoration Strategies , 2011 .

[32]  R. Shakesby,et al.  Soil water repellency. Principles, causes and relevance in fire-affected environments , 2009 .

[33]  Juan Ramón de la Riva Fernández,et al.  Evaluación de las consecuencias del fuego en quemas controladas mediante radiometría de campo , 2006 .

[34]  Jorge Mataix-Solera,et al.  Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain , 2004 .

[35]  S. Doerr,et al.  Fire Effects on Soils and Restoration Strategies , 2009 .

[36]  R. L. Alonso Consecuencias hidrológicas de los incendios forestales , 2001 .

[37]  A. C. Bolinches Factores y variaciones espacio-temporales de la infiltración en los ecosistemas mediterráneos , 1995 .

[38]  J. L. Delgado,et al.  El suelo y los incendios forestales , 1982 .