Dual disorder-driven magnetic dynamics in GdCu2 superantiferromagnetic nanoparticles

[1]  P. Svedlindh,et al.  Magnetic order and disorder environments in superantiferromagnetic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hb , 2022, Scientific reports.

[2]  L. F. Barquín,et al.  Observation of surface magnons and crystalline electric field shifts in superantiferromagnetic NdCu2 nanoparticles , 2021, Physical Review B.

[3]  Sang-Koog Kim,et al.  Channeling of spin waves in antiferromagnetic domain walls , 2021 .

[4]  I. Gudim,et al.  Magnetic excitations and exchange interactions in the substituted multiferroics (Nd,Tb)Fe3(BO3)4 revealed by inelastic neutron scattering , 2021 .

[5]  Y. Tokura,et al.  Magnetic Skyrmion Materials. , 2020, Chemical reviews.

[6]  J. Alonso,et al.  Exploring the Different Degrees of Magnetic Disorder in TbxR1−xCu2 Nanoparticle Alloys , 2020, Nanomaterials.

[7]  C. Pay Gómez,et al.  Memory and rejuvenation in a quasicrystal , 2020, Europhysics Letters.

[8]  L. F. Barquín,et al.  Investigating the Size and Microstrain Influence in the Magnetic Order/Disorder State of GdCu2 Nanoparticles , 2020, Nanomaterials.

[9]  Xiaolian Liu,et al.  Influences of element segregation on the magnetic properties in nanocrystalline Nd-Ce-Fe-B alloys , 2019, Materials Characterization.

[10]  Mathias Kläui,et al.  Perspective: Magnetic skyrmions—Overview of recent progress in an active research field , 2018, Journal of Applied Physics.

[11]  R. Duine,et al.  Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide , 2018, Nature.

[12]  Wei Zhang,et al.  Perspectives of antiferromagnetic spintronics , 2018 .

[13]  S. Heinze,et al.  Enhanced skyrmion stability due to exchange frustration , 2017, Scientific Reports.

[14]  M. Klaui,et al.  Skyrmions and multisublattice helical states in a frustrated chiral magnet , 2016, 1610.02172.

[15]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[16]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[17]  Yan Zhou,et al.  Antiferromagnetic Skyrmion: Stability, Creation and Manipulation , 2015, Scientific Reports.

[18]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[19]  J. Junquera,et al.  Anion-π and halide-halide nonbonding interactions in a new ionic liquid based on imidazolium cation with three-dimensional magnetic ordering in the solid state. , 2014, Inorganic chemistry.

[20]  I. Turek,et al.  Room-temperature antiferromagnetic memory resistor. , 2014, Nature materials.

[21]  A. Zvyagin New Physics in Frustrated Magnets. Spin Ices, Monopoles, Etc , 2014 .

[22]  A. A. Zvyagin,et al.  New physics in frustrated magnets: Spin ices, monopoles, etc. (Review Article) , 2013, 1308.1014.

[23]  J. Kohlbrecher,et al.  Grain-boundary-induced spin disorder in nanocrystalline gadolinium , 2009, Journal of Physics: Condensed Matter.

[24]  N. I. Kourov,et al.  Low-temperature specific heat of GdCu, GdCu2, and GdCu5 antiferromagnets , 2007 .

[25]  L. Fernández Barquín,et al.  Size effects in the magnetic behaviour of TbAl2 milled alloys , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  J. R. Fernández,et al.  Influence of Ce–H bonding on the physical properties of the hydrides CeCoSiH1.0 and CeCoGeH1.0 , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  J. Greedan Frustrated rare earth magnetism: Spin glasses, spin liquids and spin ices in pyrochlore oxides , 2006 .

[28]  D. Andreica,et al.  Probing the magnetic structure of GdCu2 by μSR spectroscopy , 2002 .

[29]  M. Rotter,et al.  Magnetic scattering on GdCu2 , 2000 .

[30]  P. Jönsson,et al.  Memory effects in an interacting magnetic nano-particle sample , 2000 .

[31]  M. Rotter,et al.  The magnetic structure of GdCu2 , 2000 .

[32]  J. Bouchaud,et al.  Memory and Chaos Effects in Spin Glasses , 1998, cond-mat/9806134.

[33]  P. Nordblad,et al.  Experiments on Spin Glasses , 1997 .

[34]  R. Kodama,et al.  Interfacial Uncompensated Antiferromagnetic Spins: Role in Unidirectional Anisotropy in Polycrystalline Ni 81 Fe 19 /CoO Bilayers , 1997 .

[35]  N. H. Luong,et al.  Magnetic Properties of Rare Earth‐Cu2 Compounds , 1996 .

[36]  P. Nordblad,et al.  Aging in a magnetic particle system. , 1995, Physical review letters.

[37]  M. Loewenhaupt,et al.  The magnetic structures of NdCu2 in zero field , 1994 .

[38]  J. Mydosh Spin glasses : an experimental introduction , 1993 .

[39]  Andersson,et al.  Time-dependent ac susceptibility in spin glasses. , 1992, Physical review. B, Condensed matter.

[40]  P. Morin,et al.  Chapter 1 Quadrupolar interactions and magneto-elastic effects in rare earth intermetallic compounds , 1990 .

[41]  Marchal,et al.  Influence of interface effects on a rare-earth crystal field in iron-rare-earth multilayers. , 1989, Physical review. B, Condensed matter.

[42]  N. H. Luong,et al.  Specific heat and thermal expansion in GdxY1-xCu2 , 1985 .

[43]  K. Binder,et al.  Logarithmic dynamic scaling in spin-glasses , 1984 .

[44]  Douglas L. Martin Specific heat of spin-glass CuMn below 3 K , 1979 .

[45]  R. Howard,et al.  Heat Capacity Measurements on Small Samples at Low Temperatures , 1972 .

[46]  E. A. Newman,et al.  Magnetism and Magnetic Materials , 1969 .

[47]  E. Gopal Specific Heats at Low Temperatures , 1966 .

[48]  B. Borie X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. , 1965 .