Nonlinear optomechanical measurement of mechanical motion

Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100 pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications.

[1]  Diósi,et al.  Models for universal reduction of macroscopic quantum fluctuations. , 1989, Physical review. A, General physics.

[2]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[3]  Warwick P. Bowen,et al.  Strong thermomechanical squeezing via weak measurement. , 2012, Physical review letters.

[4]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[5]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[6]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[7]  R. Hudson When is the wigner quasi-probability density non-negative? , 1974 .

[8]  M. Aspelmeyer,et al.  Cooling-by-measurement and mechanical state tomography via pulsed optomechanics , 2012, Nature Communications.

[9]  P. Meystre,et al.  A short walk through quantum optomechanics , 2012, 1210.3619.

[10]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[11]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[12]  N. Flowers-Jacobs,et al.  Fiber-cavity-based optomechanical device , 2012, 1206.3558.

[13]  P. Hakonen,et al.  Cavity optomechanics mediated by a quantum two-level system , 2014, Nature Communications.

[14]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[15]  S. Girvin,et al.  Signatures of nonlinear cavity optomechanics in the weak coupling regime. , 2013, Physical review letters.

[16]  J. Sankey,et al.  Strong and tunable nonlinear optomechanical coupling in a low-loss system , 2010, 1002.4158.

[17]  K. Vahala,et al.  Mechanical oscillation and cooling actuated by the optical gradient force. , 2009, Physical review letters.

[18]  A. I. Lvovsky,et al.  Quantum-optical state engineering up to the two-photon level , 2009, 0908.4113.

[19]  H. Miao,et al.  Standard quantum limit for probing mechanical energy quantization. , 2009, Physical review letters.

[20]  R. J. Schoelkopf,et al.  Quantum Back-Action of an Individual Variable-Strength Measurement , 2013, Science.

[21]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[22]  G. Milburn,et al.  An introduction to quantum optomechanics , 2011 .

[23]  A. Heidmann,et al.  Effective mass in quantum effects of radiation pressure , 1999, quant-ph/9901057.

[24]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[25]  C. Macklin,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[26]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[27]  O. Romero-Isart,et al.  Quantum superposition of massive objects and collapse models , 2011, 1110.4495.

[28]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[29]  Justin Finn,et al.  Engineering superposition states and tailored probes for nanoresonators via open-loop control. , 2008, Physical review letters.

[30]  M. Vanner Selective Linear or Quadratic Optomechanical Coupling via Measurement , 2011, 1106.0763.

[31]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[32]  G. J. Milburn,et al.  Pulsed quantum optomechanics , 2010, Proceedings of the National Academy of Sciences.

[33]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[34]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[35]  D. Stamper-Kurn,et al.  Tunable cavity optomechanics with ultracold atoms. , 2010, Physical review letters.

[36]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[37]  T. Kippenberg,et al.  Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling , 2011 .

[38]  Andrew C Doherty,et al.  The quantum trajectory approach to quantum feedback control of an oscillator revisited , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  D. Bouwmeester,et al.  Creating and verifying a quantum superposition in a micro-optomechanical system , 2008, 0807.1834.

[40]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[41]  Paul,et al.  Realistic optical homodyne measurements and quasiprobability distributions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[42]  Jeff T. Hill,et al.  Nonlinear Optics and Wavelength Translation Via Cavity-Optomechanics , 2013 .

[43]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[44]  M. Blencowe,et al.  Effective field theory approach to gravitationally induced decoherence. , 2012, Physical review letters.

[45]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[46]  V. Giovannetti,et al.  Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion , 2000, quant-ph/0006084.

[47]  Silvan Schmid,et al.  Damping mechanisms in high-Q micro and nanomechanical string resonators , 2011 .

[48]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.