Differentially 4-uniform functions

We give a geometric characterization of vectorial boolean functions with differential uniformity less or equal to 4.

[1]  Yves Aubry,et al.  A Weil theorem for singular curves , 1996 .

[2]  François Rodier Borne sur le degré des polynômes presque parfaitement non-linéaires , 2006, ArXiv.

[3]  T. Willmore Algebraic Geometry , 1973, Nature.

[4]  Claude Carlet,et al.  Two Classes of Quadratic APN Binomials Inequivalent to Power Functions , 2008, IEEE Transactions on Information Theory.

[5]  José Felipe Voloch Symmetric Cryptography and Algebraic Curves , 2008 .

[6]  Carl Bracken,et al.  A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree , 2009, Finite Fields Their Appl..

[7]  Heeralal Janwa,et al.  Double-Error-Correcting Cyclic Codes and Absolutely Irreducible Polynomials over GF(2) , 1995 .

[8]  S. Lang,et al.  NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .

[9]  Kaisa Nyberg,et al.  Differentially Uniform Mappings for Cryptography , 1994, EUROCRYPT.

[10]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[11]  Gary McGuire,et al.  Proof of a Conjecture on the Sequence of Exceptional Numbers, Classifying Cyclic Codes and APN Functions , 2009, ArXiv.

[12]  Yves Aubry,et al.  On the characteristic polynomials of the Frobenius endomorphism for projective curves over finite fields , 2004, Finite Fields Their Appl..

[13]  Sudhir R. Ghorpade,et al.  \'Etale cohomology, Lefschetz Theorems and Number of Points of Singular Varieties over Finite Fields , 2008, 0808.2169.

[14]  Thierry P. Berger,et al.  On Almost Perfect Nonlinear Functions Over$mmb F_2^n$ , 2006, IEEE Transactions on Information Theory.