Effect of viscosity on homogeneous-heterogeneous flow regime transition in bubble columns

Abstract Experiments were performed in a cylindrical 0.14 m diameter bubble column with a metal perforated plate. Air and aqueous solutions of glycerol with viscosity 1–22 mPa s were the phases. Gas holdup was measured and plotted against the gas flow rate. The critical point where the homogeneous–heterogeneous regime transition begins was determined by the drift-flux plot of the primary data. The homogeneous regime stability was expressed by the critical values of the gas holdup and gas flow rate. The results show that moderate viscosity (3–22 mPa s) destabilizes the homogeneous regime and advance the transition. The results indicate that low viscosity (1–3 mPa s) could stabilize the homogeneous regime. The destabilizing effect of the column height proved previously for air–water system applies also to viscous batches.

[1]  Yatish T. Shah,et al.  Design parameters estimations for bubble column reactors , 1982 .

[2]  Rajamani Krishna,et al.  Size, structure and dynamics of “large” bubbles in a two-dimensional slurry bubble column , 1996 .

[3]  O. Molerus,et al.  Principles of Flow in Disperse Systems , 1993 .

[4]  A. Schumpe,et al.  Viscous media in tower bioreactors: Hydrodynamic characteristics and mass transfer properties , 1987 .

[5]  Rajamani Krishna,et al.  Analogous description of the hydrodynamics of gas-solid fluidized beds and bubble columns , 1993 .

[6]  Atsushi Tsutsumi,et al.  GAS-LIQUID MASS TRANSFER IN A THREE-PHASE REACTOR , 1993 .

[7]  A. Schumpe,et al.  Improved tools for bubble column reactor design and scale-up☆ , 1993 .

[8]  Liang-Shih Fan,et al.  Bubble characteristics in three-phase systems used for pulp and paper processing , 1996 .

[9]  S. M. Ghiaasiaan,et al.  Flow regimes and gas holdup in paper pulp–water–gas three-phase slurry flow , 2003 .

[10]  A. Schumpe,et al.  Gas holdups, specific interfacial areas, and mass transfer coefficients of aerated carboxymethyl cellulose solutions in a bubble column , 1982 .

[11]  Liang-Shih Fan,et al.  Bubble wake dynamics in liquids and liquid-solid suspensions , 1990 .

[12]  R. Krishna,et al.  Flow regime transition in bubble columns , 1999 .

[13]  Jyeshtharaj B. Joshi,et al.  CRITERIA FOR THE TRANSITION FROM THE HOMOGENEOUS TO THE HETEROGENEOUS REGIME IN TWO-DIMENSIONAL BUBBLE COLUMN REACTORS , 1992 .

[14]  Liang-Shih Fan,et al.  Fundamentals of gas‐liquid‐solid fluidization , 1985 .

[15]  N. Cheng,et al.  Exponential formula for computing effective viscosity. , 2003 .

[16]  Aniruddha B. Pandit,et al.  Mass and heat transfer characteristics of three phase sparged reactors , 1986 .

[17]  M. Ruzicka,et al.  Buoyancy-driven instability of bubbly layers: analogy with thermal convection , 2003 .

[18]  B. G. Kelkar,et al.  Hydrodynamics and axial mixing in a three-phase bubble column , 1982 .

[19]  Wen Jianping,et al.  Local hydrodynamics in a gas-liquid-solid three-phase bubble column reactor , 1998 .

[20]  A. Liné,et al.  Stability analysis of a bubble column , 2001 .

[21]  P. Wilkinson,et al.  Design parameters estimation for scale‐up of high‐pressure bubble columns , 1992 .

[22]  Rajamani Krishna,et al.  A MODEL FOR GAS HOLDUP IN BUBBLE COLUMNS INCORPORATING THE INFLUENCE OF GAS DENSITY ON FLOW REGIME TRANSITIONS , 1991 .

[23]  B. G. Kelkar,et al.  Effect of gas and liquid properties on gas phase dispersion in bubble columns , 1995 .

[24]  František Kaštánek,et al.  Chemical reactors for gas-liquid systems , 1992 .

[25]  H. Müller-Steinhagen,et al.  Effect of solid particles on gas hold‐up in bubble columns , 1991 .

[26]  H. Kumazawa,et al.  Gas holdup and mass-transfer characteristics in a three-phase bubble column , 1986 .

[27]  J. Kratochvíl,et al.  Hydrodynamics and mass transfer in uniformly aerated bubble column reactors , 1982 .

[28]  J. Zahradník,et al.  GAS HOLDUP IN UNIFORMLY AERATED BUBBLE COLUMN REACTORS , 1979 .

[29]  D. Guha,et al.  Suspension of solids in a bubbling liquid: Critical gas flow rates for complete suspension , 1964 .

[30]  B. G. Kelkar FLOW REGIME CHARACTERISTICS IN COCURRENT BUBBLE COLUMN REACTORS , 1986 .

[31]  Dennis N. Smith,et al.  Dispersed solid dynamics in a slurry bubble column , 1985 .

[32]  Shigeo Uchida,et al.  Flow structure and phase distributions in a slurry bubble column , 1997 .

[33]  R. Krishna,et al.  Influence of gas density on the stability of homogeneous flow in bubble columns , 1993 .

[34]  Robert W. Field,et al.  Bubble Column Reactors , 1991 .

[35]  M. Fialová,et al.  Duality of the gas-liquid flow regimes in bubble column reactors , 1997 .

[36]  N. H. Thomas,et al.  Homogeneous–heterogeneous regime transition in bubble columns , 2001 .

[37]  Jyeshtharaj B. Joshi,et al.  Effect of fine particles on gas hold-up in three-phase sparged reactors , 1990 .

[38]  Yasuo Kato,et al.  The Behavior of Suspended Solid Particles and Liquid in Bubble Columns (気液接触反応装置に関する研究) -- (気泡塔) , 1972 .

[39]  K. N. Clark The effect of high pressure and temperature on phase distributions in a bubble column , 1990 .

[40]  K. Schügerl,et al.  Holdup and backmixing investigations in cocurrent and countercurrent bubble columns , 1975 .

[41]  Yatish T. Shah,et al.  Gas-liquid-solid reactor design , 1979 .

[42]  G. Wallis One Dimensional Two-Phase Flow , 1969 .

[43]  Liang-Shih Fan,et al.  Single bubble formation in high pressure liquid—solid suspensions , 1998 .

[44]  John R. Grace,et al.  Flow regime identification in gas-liquid flow and three-phase fluidized beds , 1997 .

[45]  M. C. Ruzickaa,et al.  Effect of viscosity on homogeneous – heterogeneous flow regime transition in bubble columns , 2003 .

[46]  E. Barnea,et al.  A generalized approach to the fluid dynamics of particulate systems: Part 1. General correlation for fluidization and sedimentation in solid multiparticle systems , 1973 .

[47]  Aniruddha B. Pandit,et al.  Three Phase Sparged Reactors — Some Design Aspects , 1984 .

[48]  J. Philip,et al.  Gas hold-up and liquid circulation in internal loop reactors containing highly viscous newtonian and non-newtonian liquids , 1990 .

[49]  Liang-Shih Fan,et al.  Some aspects of high-pressure phenomena of bubbles in liquids and liquid–solid suspensions , 1999 .

[50]  G. Wild,et al.  Hydrodynamics and mass transfer in a suspended solid bubble column with polydispersed high density particles , 1997 .

[51]  G. Kuncová,et al.  Gas holdup and bubble frequency in a bubble column reactor containing viscous saccharose solutions , 1995 .

[52]  Effect of bubble column dimensions on flow regime transition , 2001 .

[53]  J. Heijnen,et al.  Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors , 1984 .

[54]  R. S. Douek,et al.  Hydrodynamics of vertical co-current gas-liquid-solid flows , 1997 .

[55]  D. Scott,et al.  The role of gas phase momentum in determining gas holdup and hydrodynamic flow regimes in bubble column operations , 1994 .

[56]  R. Krishna,et al.  Gas holdup in slurry bubble columns: Effect of column diameter and slurry concentrations , 1997 .

[57]  Liang-Shih Fan,et al.  Suspension viscosity and bubble rise velocity in liquid-solid fluidized beds , 1997 .

[58]  Jyeshtharaj B. Joshi,et al.  Hydrodynamic stability of multiphase reactors , 2001 .

[59]  Maurice A. Bergougnou,et al.  Hydrodynamic behavior of slurry bubble column at high solids concentrations , 1999 .

[60]  B. G. Kelkar,et al.  Hydrodynamics and axial mixing in a three-phase bubble column. Effects of slurry properties , 1984 .

[61]  Liang-Shih Fan,et al.  High-pressure three-phase fluidization: Hydrodynamics and heat transfer , 1997 .

[62]  A. Schumpe,et al.  Gas-liquid interfacial areas in a bubble column with suspended solids , 1984 .

[63]  James A. Finch,et al.  Effect of solid particles on gas holdup in flotation columns—I. Measurement , 1995 .

[64]  David G. Thomas Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles , 1965 .

[65]  Chun-Min Chang,et al.  Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles , 1995 .

[66]  Shyh-Jye Hwang,et al.  Gas holdup and liquid velocity in three-phase internal-loop airlift reactors , 1997 .

[67]  R. Worden,et al.  The effects of solids density and void fraction on the bubble rise velocity in a liquid-solid fluidized bed , 1992 .

[68]  James A. Finch,et al.  Effect of solid particles on gas holdup in flotation columns—II. Investigation of mechanisms of gas holdup reduction in presence of solids , 1995 .

[69]  K. Koide,et al.  GAS HOLDUP AND VOLUMETRIC LIQUID-PHASE MASS TRANSFER COEFFICIENT IN SOLID-SUSPENDED BUBBLE COLUMNS , 1984 .

[70]  Koichi Terasaka,et al.  Behavior of bubble formation in suspended solution for an elevated pressure system , 1997 .

[71]  M. Ityokumbul,et al.  Effect of fine solids and frother on gas hold-up and liquid mixing in a flotation column , 1995 .

[72]  L. Fan,et al.  On the rise velocity of bubbles in liquid-solid suspensions at elevated pressure and temperature , 1997 .

[73]  H. Kumazawa,et al.  Influences of suspended fine particles on gas holdup and mass transfer characteristics in a slurry bubble column , 1986 .