Possibilistic and probabilistic fuzzy clustering: unification within the framework of the non-extensive thermostatistics
暂无分享,去创建一个
Michel Ménard | Pierre-André Dardignac | Vincent Courboulay | V. Courboulay | M. Ménard | Pierre-André Dardignac
[1] Sadaaki Miyamoto,et al. An overview and new methods in fuzzy clustering , 1998, 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111).
[2] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[3] Enrique H. Ruspini,et al. A New Approach to Clustering , 1969, Inf. Control..
[4] A. Schneider. Weighted possibilistic c-means clustering algorithms , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).
[5] Stephen L. Chiu,et al. Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..
[6] Vladik Kreinovich,et al. Optimal Choices of Potential Functions in Fuzzy Clustering , 1998 .
[7] James C. Bezdek,et al. Validity-guided (re)clustering with applications to image segmentation , 1996, IEEE Trans. Fuzzy Syst..
[8] A. Plastino,et al. Tsallis nonextensive thermostatistics and Fisher's information measure , 1997 .
[9] Sadaaki Miyamoto,et al. Fuzzy c-means as a regularization and maximum entropy approach , 1997 .
[10] James M. Keller,et al. A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..
[11] Sadaaki Miyamoto,et al. Fuzzy clustering by quadratic regularization , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).
[12] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[13] R.J. Hathaway,et al. Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..
[14] Pierre Loonis,et al. The fuzzy c+2-means: solving the ambiguity rejection in clustering , 2000, Pattern Recognit..
[15] B. R. Frieden. Fisher information as a measure of time , 1996 .
[16] Rui-Ping Li,et al. A maximum-entropy approach to fuzzy clustering , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..
[17] Rajesh N. Davé,et al. Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..
[18] Geoffrey C. Fox,et al. A deterministic annealing approach to clustering , 1990, Pattern Recognit. Lett..
[19] Michel Ménard,et al. Fuzzy clustering and switching regression models using ambiguity and distance rejects , 2001, Fuzzy Sets Syst..
[20] Xinbo Gao,et al. Advances in theory and applications of fuzzy clustering , 2000 .
[21] Abraham Kandel,et al. Fuzzy Partition and Fuzzy Rule Base , 1998, Inf. Sci..
[22] Sankar K. Pal,et al. Fuzzy models for pattern recognition , 1992 .
[23] J. C. Peters,et al. Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .
[24] C. Tsallis. Entropic nonextensivity: a possible measure of complexity , 2000, cond-mat/0010150.
[25] James C. Bezdek,et al. Optimization of clustering criteria by reformulation , 1995, IEEE Trans. Fuzzy Syst..
[26] F. Pennini,et al. The Frieden–Soffer extreme physical information principle in a non-extensive setting , 1999 .
[27] James M. Keller,et al. The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..
[28] B. Frieden,et al. Physics from Fisher Information: A Unification , 1998 .
[29] A. Kandel. Fuzzy Mathematical Techniques With Applications , 1986 .