Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow

[1]  S. Son,et al.  Agglomerate Sizing in Aluminized Propellants Using Digital Inline Holography and Traditional Diagnostics , 2018, Journal of Propulsion and Power.

[2]  T. Theofanous,et al.  The physics of aerobreakup. IV. Strain-thickening liquids , 2017 .

[3]  Jian Gao,et al.  Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography , 2017 .

[4]  H. L. Stauffacher,et al.  Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry , 2017 .

[5]  Edward P. DeMauro,et al.  Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV , 2017 .

[6]  Weimin Ma,et al.  On the fragmentation characteristics of melt jets quenched in water , 2017 .

[7]  Quantitative , Bias-Corrected Measurements of Droplet Position , Size and Velocity with Digital In-line Holography , 2017 .

[8]  Edward P. DeMauro,et al.  Aerodynamic Breakup and Secondary Drop Formation for a Liquid Metal Column in a Shock-Induced Cross-Flow. , 2017 .

[9]  D. Guildenbecher,et al.  Digital Imaging Holography and Pyrometry of Aluminum Drop Combustion in Solid Propellant Plumes , 2016 .

[10]  Tianyou Wang,et al.  Influence of density ratio on the secondary atomization of liquid droplets under highly unstable conditions , 2016 .

[11]  Daniel R Guildenbecher,et al.  High-speed (20  kHz) digital in-line holography for transient particle tracking and sizing in multiphase flows. , 2016, Applied optics.

[12]  Edward P. DeMauro,et al.  Pulse-Burst PIV Measurements of Transient Phenomena in a Shock Tube , 2016 .

[13]  kHz Rate Digital In-line Holography Applied to Quantify Secondary Droplets from the Aerodynamic Breakup of a Liquid Column in a Shock-Tube. , 2016 .

[14]  Culbert B. Laney Improved Root Normal Size Distributions for Liquid Atomization , 2015 .

[15]  Edward P. DeMauro,et al.  Time-Resolved PIV in a Shock Tube using a Pulse-Burst Laser. , 2015 .

[16]  M. Yuan,et al.  Numerical analysis on molten droplet hydrodynamic deformation and surface waves under high pressure pulse , 2015 .

[17]  G. Amberg,et al.  Drop deformation and breakup , 2014 .

[18]  Michael D. Dickey,et al.  Emerging Applications of Liquid Metals Featuring Surface Oxides , 2014, ACS applied materials & interfaces.

[19]  Jian Gao,et al.  Refinement of particle detection by the hybrid method in digital in-line holography. , 2014, Applied optics.

[20]  H. L. Stauffacher,et al.  Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography. , 2014, Optics letters.

[21]  Yang Yanhua,et al.  Numerical simulation of molten droplet deformation and disintegration under sudden accelerations , 2014 .

[22]  Jian Gao,et al.  Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method. , 2013, Optics express.

[23]  Jing Liu,et al.  Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment , 2013, 1309.1075.

[24]  Jun Chen,et al.  Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method. , 2013, Applied optics.

[25]  Dong-Weon Lee,et al.  Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. , 2013, ACS applied materials & interfaces.

[26]  D. Stewart,et al.  Shock interaction with a deformable particle: Direct numerical simulation and point-particle modeling , 2013 .

[27]  T. Zahrah,et al.  VACUUM-ASSISTED GAS ATOMIZATION OF LIQUID METAL , 2012 .

[28]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[29]  Jiming Zhou,et al.  Modeling and characterization of metal droplets generation by using a pneumatic drop-on-demand generator , 2012 .

[30]  W. Trott,et al.  A multiphase shock tube for shock wave interactions with dense particle fields , 2012 .

[31]  Xiubing Liang,et al.  Numerical Simulation of the Twin-Wire Arc Spraying Process: Modeling the High Velocity Gas Flow Field Distribution and Droplets Transport , 2012, Journal of Thermal Spray Technology.

[32]  C. Kim,et al.  Characterization of liquid-metal Galinstan® for droplet applications , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[33]  J. Katz,et al.  Applications of Holography in Fluid Mechanics and Particle Dynamics , 2010 .

[34]  D. Guildenbecher,et al.  Secondary atomization , 2009 .

[35]  L C Cadwallader,et al.  GaInSn usage in the research laboratory. , 2008, The Review of scientific instruments.

[36]  G. Whitesides,et al.  Eutectic Gallium‐Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature , 2008 .

[37]  C. Karcher,et al.  Stability of liquid metal drops affected by a high-frequency magnetic field. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  G. J. Li,et al.  Aerobreakup in Rarefied Supersonic Gas Flows , 2004 .

[39]  B. V. Leer,et al.  Deformation and Drag Properties of Round Drops Subjected to Shock-Wave Disturbances , 2003 .

[40]  P. Grant,et al.  Large arc voltage fluctuations and droplet formation in electric arc wire spraying , 2003 .

[41]  Udo Fritsching,et al.  Jet break up of liquid metal in twin fluid atomisation , 2002 .

[42]  K. Takayama,et al.  A PARAMETRIC STUDY OF WATER COLUMN DEFORMATION RESULTING FROM SHOCK WAVE LOADING , 2002 .

[43]  J. Heberlein,et al.  Atomization and particle-jet interactions in the wire-arc spraying process , 2001 .

[44]  D. Joseph,et al.  Breakup of a liquid drop suddenly exposed to a high-speed airstream , 1999 .

[45]  G. Faeth,et al.  Temporal properties of secondary drop breakup in the bag breakup regime , 1998 .

[46]  U. Klemradt,et al.  In situ x-ray reflectivity study of the oxidation kinetics of liquid gallium and the liquid alloy ? , 1998 .

[47]  K. Takayama,et al.  Investigation of aerodynamic breakup of a cylindrical water droplet , 1998 .

[48]  G. Faeth,et al.  Temporal properties of drop breakup in the shear breakup regime , 1997 .

[49]  M. J. Regan,et al.  X-ray study of the oxidation of liquid-gallium surfaces , 1997 .

[50]  G. Faeth,et al.  Drop deformation and breakup due to shock wave and steady disturbances , 1994 .

[51]  D. J. Brear,et al.  Experimental study on simulated molten jet-coolant interactions , 1995 .

[52]  Gerard M. Faeth,et al.  Drop properties after secondary breakup , 1993 .

[53]  Gerard M. Faeth,et al.  Near-limit drop deformation and secondary breakup , 1992 .

[54]  D. Benson,et al.  Aerosol production by high-velocity molten-metal droplets , 1988 .

[55]  M. Pilch,et al.  Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop , 1987 .

[56]  Peter J. O'Rourke,et al.  The TAB method for numerical calculation of spray droplet breakup , 1987 .

[57]  H. C. Simmons The Correlation of Drop-Size Distributions in Fuel Nozzle Sprays—Part I: The Drop-Size/Volume-Fraction Distribution , 1976 .

[58]  L. H. C. Tippett,et al.  Statistical Methods in the Process Industries , 1975 .

[59]  J. Nicholls,et al.  Aerodynamic shattering of liquid drops. , 1968 .

[60]  N. Dombrowski,et al.  The effect of ambient density on drop formation in sprays , 1962 .

[61]  L. Rayleigh On The Instability Of Jets , 1878 .