Hierarchical analysis of process variation for mixed-signal systems

Increasing process variability necessitates reliable analysis of its effects on circuit performance not only at the top level but also at intermediate levels. Mixed-signal circuits with multiple hierarchical layers, multiple parameters, and complex functional relations are especially susceptible to such variations. In this paper, we present a hierarchical method for process variation analysis. The ability to compute the variance of parameters at each hierarchical layer makes the method particularly suited for helping designers through design iterations. Experimental results indicate that the proposed method achieves high computational efficiency with up to 2% compromise in accuracy even for highly nonlinear functional relations.

[1]  D. M. H. Walker,et al.  Timing analysis of combinational circuits including capacitive coupling and statistical process variation , 2000, Proceedings 18th IEEE VLSI Test Symposium.

[2]  Stephen H. Lewis,et al.  Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications , 1992 .

[3]  Sina Balkir,et al.  Analog VLSI Design Automation , 2003 .

[4]  Michel Haond,et al.  Validated 90nm CMOS technology platform with low-k copper interconnects for advanced system-on-chip (SoC) , 2002, Proceedings of the 2002 IEEE International Workshop on Memory Technology, Design and Testing (MTDT2002).

[5]  Bozena Kaminska,et al.  Analog circuit fault diagnosis based on sensitivity computation and functional testing , 1992, IEEE Design & Test of Computers.

[6]  Douglas S. Reeves,et al.  A distributed algorithm for delay-constrained unicast routing , 1997, Proceedings of INFOCOM '97.

[7]  David Blaauw,et al.  Statistical timing analysis for intra-die process variations with spatial correlations , 2003, ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No.03CH37486).

[8]  C.-J. Richard Shi,et al.  Rapid frequency-domain analog fault simulation under parameter tolerances , 1997, DAC.

[9]  Bozena Kaminska,et al.  Analog circuit testing based on sensitivity computation and new circuit modeling , 1993, Proceedings of IEEE International Test Conference - (ITC).

[10]  David Blaauw,et al.  Statistical Timing Analysis for Intra-Die Process Variations with Spatial Correlations , 2003, ICCAD 2003.

[11]  Li,et al.  Band structures of all polycrystalline forms of silicon dioxide. , 1985, Physical review. B, Condensed matter.

[12]  Alan B. Grebene,et al.  Analog Integrated Circuit Design , 1978 .

[13]  John R. D'Errico,et al.  Statistical tolerancing using a modification of Taguchi's method , 1988 .

[14]  Sujit Dey,et al.  Fast true delay estimation during high level synthesis , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[16]  Peter Y. K. Cheung,et al.  Hierarchical tolerance analysis using statistical behavioral models , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  Joshua U. Turner,et al.  Review of statistical approaches to tolerance analysis , 1995, Comput. Aided Des..

[18]  Richard M. Van Slyke,et al.  Letter to the Editor---Monte Carlo Methods and the PERT Problem , 1963 .

[19]  Sule Ozev,et al.  Statistical Tolerance Analysis for Assured Analog Test Coverage , 2003, J. Electron. Test..

[20]  Georges G. E. Gielen,et al.  AMGIE-A synthesis environment for CMOS analog integrated circuits , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Kurt Keutzer,et al.  A general probabilistic framework for worst case timing analysis , 2002, DAC '02.

[22]  David H. Evans,et al.  Statistical Tolerancing: The State of the Art, Part I. Background , 1974 .

[23]  David H. Evans Statistical Tolerancing: The State of the Art: Part II. Methods for Estimating Moments , 1975 .

[24]  Bozena Kaminska,et al.  Worst case tolerance analysis and CLP-based multifrequency test generation for analog circuits , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[25]  Van Slyke,et al.  MONTE CARLO METHODS AND THE PERT PROBLEM , 1963 .

[26]  G. Erten,et al.  Multi-level optimisation approach to switched capacitor filter synthesis , 2000 .

[27]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[28]  Genichi Taguchi,et al.  Performance analysis design , 1978 .

[29]  Sule Ozev,et al.  Boosting the accuracy of analog test coverage computation through statistical tolerance analysis , 2002, Proceedings 20th IEEE VLSI Test Symposium (VTS 2002).

[30]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[31]  M. W. Tian,et al.  Worst case tolerance analysis of linear analog circuits using sensitivity bands , 2000 .

[32]  Brian A. A. Antao,et al.  ARCHGEN: Automated synthesis of analog systems , 1995, IEEE Trans. Very Large Scale Integr. Syst..