THE PRESENCE OF WEAK ACTIVE GALACTIC NUCLEI IN HIGH REDSHIFT STAR-FORMING GALAXIES

We present [O III 5007 A] observations of the star-forming galaxy (SFG) HDF-BMZ1299 (z = 1.598) using Keck Observatory's adaptive optics system with the near-infrared integral field spectrograph OSIRIS. Using previous Hα and [N II] measurements of the same source, we are able for the first time to use spatially resolved observations to place a high-redshift galaxy's substructure on a traditional H II diagnostic diagram. We find that HDF-BMZ1299's spatially concentrated nebular ratios in the central ~1.5 kpc (02) are best explained by the presence of an active galactic nucleus (AGN): log ([N II]/Hα) = –0.22 ± 0.05 and 2σ limit of log ([O III]/Hβ) 0.26. The dominant energy source of this galaxy is star formation, and integrating a single aperture across the galaxy yields nebular ratios that are composite spectra from both AGN and H II regions. The presence of an embedded AGN in HDF-BMZ1299 may suggest a potential contamination in a fraction of other high-redshift SFGs, and we suggest that this may be a source of the elevated nebular ratios previously seen in seeing-limited metallicity studies. HDF-BMZ1299's estimated AGN luminosity is L Hα = (3.7 ± 0.5) × 1041 erg s–1 and = (5.8 ± 1.9) × 1041 erg s–1, making it one of the lowest luminosity AGNs discovered at this early epoch.

[1]  AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.

[2]  A. Hornschemeier,et al.  THE RELATIONSHIP OF HARD X-RAY AND OPTICAL LINE EMISSION IN LOW-REDSHIFT ACTIVE GALACTIC NUCLEI , 2005 .

[3]  A. Cimatti,et al.  THE SINS SURVEY: BROAD EMISSION LINES IN HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0902.4704.

[4]  H. Rix,et al.  A Statistical Study of Rest-Frame Optical Emission Properties in Luminous Quasars at 2.0⩽z⩽2.5* , 1998, astro-ph/9810287.

[5]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[6]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[7]  European Southern Observatory,et al.  XMM-Newton observation of the Lockman Hole - II. Spectral analysis , 2002, astro-ph/0207166.

[8]  C. Carollo,et al.  Oxygen Gas Abundances at z~1.4: Implications for the Chemical Evolution History of Galaxies , 2005, astro-ph/0511255.

[9]  Emission-line diagnostics of low-metallicity active galactic nuclei , 2006, astro-ph/0607311.

[10]  J. Brinchmann,et al.  Metallicities and Physical Conditions in Star-forming Galaxies at z ~ 1.0-1.5 , 2008, 0801.1670.

[11]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[12]  Robert J. Brunner,et al.  Active Galactic Nuclei in the Sloan Digital Sky Survey. I. Sample Selection , 2005 .

[13]  P. Ciliegi,et al.  The HELLAS2XMM Survey. VII. The Hard X-Ray Luminosity Function of AGNs up to z = 4: More Absorbed AGNs at Low Luminosities and High Redshifts , 2005, astro-ph/0509081.

[14]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[15]  James E. Larkin,et al.  DYNAMICS OF GALACTIC DISKS AND MERGERS AT z ∼ 1.6: SPATIALLY RESOLVED SPECTROSCOPY WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS , 2008, 0810.5599.

[16]  Max Pettini,et al.  The Physical Nature of Rest-UV Galaxy Morphology During the Peak Epoch of Galaxy Formation , 2007 .

[17]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[18]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[19]  Marcia J. Rieke,et al.  TURNING BACK THE CLOCK: INFERRING THE HISTORY OF THE EIGHT O'CLOCK ARC , 2009, 0905.1122.

[20]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[21]  H. Tananbaum,et al.  The Luminosity Function of X-Ray-selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift , 2007, 0710.2461.

[22]  C. Steidel,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 12/14/05 Hα OBSERVATIONS OF A LARGE SAMPLE OF GALAXIES AT z ∼ 2: IMPLICATIONS FOR STAR FORMATION IN HIGH REDSHIFT GALAXIES 1 , 2006 .

[23]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[24]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[25]  Andreas Quirrenbach,et al.  OSIRIS: A diffraction limited integral field spectrograph for Keck , 2006 .

[26]  A. Coil,et al.  Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.

[27]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[28]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[29]  Leiden,et al.  New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling , 2008, 0801.1678.

[30]  M. Pettini,et al.  The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.

[31]  P. P. van der Werf,et al.  The Origin of Line Emission in Massive z ~ 2.3 Galaxies: Evidence for Cosmic Downsizing of AGN Host Galaxies , 2006, astro-ph/0611724.

[32]  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[33]  G. Neugebauer,et al.  Infrared standard stars , 1982 .

[34]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[35]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[36]  A. Akylas,et al.  Comparison between the luminosity functions of X-ray and [OIII] selected AGN , 2009, 0911.0102.