ADMM ⊇ projective dynamics: fast simulation of general constitutive models

We apply the alternating direction method of multipliers (ADMM) optimization algorithm to implicit time integration of elastic bodies, and show that the resulting method closely relates to the recently proposed projective dynamics algorithm. However, as ADMM is a general-purpose optimization algorithm applicable to a broad range of objective functions, it permits the use of nonlinear constitutive models and hard constraints while retaining the speed, parallelizability, and robustness of projective dynamics. We demonstrate these benefits on several examples that include cloth, collisions, and volumetric deformable bodies with nonlinear elasticity.

[1]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[2]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[3]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[4]  Steve Marschner,et al.  Data‐Driven Estimation of Cloth Simulation Models , 2012, Comput. Graph. Forum.

[5]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[6]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[7]  Wolfgang Heidrich,et al.  From capture to simulation , 2014, ACM Trans. Graph..

[8]  James F. O'Brien,et al.  Optimal presentation of imagery with focus cues on multi-plane displays , 2015, ACM Trans. Graph..

[9]  Hongyi Xu,et al.  Nonlinear material design using principal stretches , 2015, ACM Trans. Graph..

[10]  Huamin Wang,et al.  A chebyshev semi-iterative approach for accelerating projective and position-based dynamics , 2015, ACM Trans. Graph..

[11]  Miguel A. Otaduy,et al.  A Survey on Position‐Based Simulation Methods in Computer Graphics , 2014, Comput. Graph. Forum.

[12]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[13]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[14]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[15]  Tiantian Liu,et al.  Towards Real-time Simulation of Hyperelastic Materials , 2016, ArXiv.

[16]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[17]  M. Otaduy,et al.  Capture and modeling of non-linear heterogeneous soft tissue , 2009, ACM Trans. Graph..

[18]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..

[19]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[20]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[21]  宮川翔貴 ”Fast Simulation of Mass‐Spring Systems”の研究報告 , 2016 .

[22]  Bailin Deng,et al.  ShapeOp—A Robust and Extensible Geometric Modelling Paradigm , 2015 .

[23]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[24]  Mark Pauly,et al.  Shape‐Up: Shaping Discrete Geometry with Projections , 2012, Comput. Graph. Forum.

[25]  Huamin Wang,et al.  Data-driven elastic models for cloth: modeling and measurement , 2011, ACM Trans. Graph..

[26]  Konstantina Christakopoulou,et al.  Accelerated Alternating Direction Method of Multipliers , 2015, KDD.

[27]  翔貴 宮川 ”Fast Simulation of Mass-Spring Systems”の研究報告 , 2016 .

[28]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[29]  Zhi-Quan Luo,et al.  Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems , 2015, ICASSP.

[30]  Arindam Banerjee,et al.  Online Alternating Direction Method , 2012, ICML.

[31]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[32]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[33]  Lieven Vandenberghe,et al.  Primal-Dual Decomposition by Operator Splitting and Applications to Image Deblurring , 2014, SIAM J. Imaging Sci..

[34]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..