Finite element valuation of swing options

In this paper an algorithm based on Finite Element Methods is presented to value American type of swing contracts with multiple exercise rights. Thereby the reduction of multiple stopping time problems to a cascade of single stopping time problems is utilized. The numerical results obtained with the proposed algorithm show a smooth and stable behavior. This allows an interpretation of the swing options’ optimal exercise boundaries and an analysis of the dependence of swing option prices on the initial spot prices. A comparison of the Finite Element algorithm to Monte Carlo and lattice methods demonstrates the strengths of the proposed numerical algorithm.

[1]  A. C. Thompson Valuation of Path-Dependent Contingent Claims with Multiple Exercise Decisions over Time: The Case of Take-or-Pay , 1995, Journal of Financial and Quantitative Analysis.

[2]  Juri Hinz,et al.  Valuing virtual production capacities on flow commodities , 2006, Math. Methods Oper. Res..

[3]  J. Keppo Pricing of Electricity Swing Options , 2004 .

[4]  Eduardo S. Schwartz,et al.  Electricity Prices and Power Derivatives: Evidence from the Nordic Power Exchange , 2000 .

[5]  Alfredo Ibáñez,et al.  Valuation by Simulation of Contingent Claims with Multiple Early Exercise Opportunities , 2004 .

[6]  S. Z. Levendorski,et al.  Early exercise boundary and option prices in Levy driven models , 2004 .

[7]  N. Meinshausen,et al.  MONTE CARLO METHODS FOR THE VALUATION OF MULTIPLE‐EXERCISE OPTIONS , 2004 .

[8]  R. Carmona,et al.  OPTIMAL MULTIPLE STOPPING AND VALUATION OF SWING OPTIONS , 2008 .

[9]  D. Lamberton,et al.  Variational inequalities and the pricing of American options , 1990 .

[10]  Savas Dayanik,et al.  OPTIMAL MULTIPLE-STOPPING OF LINEAR DIFFUSIONS AND SWING OPTIONS , 2003 .

[11]  A. Boriçi,et al.  Fast Solutions of Complementarity Formulations in American Put Pricing , 2005 .

[12]  Alan G. White,et al.  Efficient Procedures for Valuing European and American Path-Dependent Options , 1993 .

[13]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[14]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[15]  Patrick Jaillet,et al.  Valuation of Commodity-Based Swing Options , 2004, Manag. Sci..

[16]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[17]  M. Dahlgren,et al.  A Continuous Time Model to Price Commodity-Based Swing Options , 2005 .

[18]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[19]  C. Schwab,et al.  Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .

[20]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[21]  THE SWING OPTION ON THE STOCK MARKET , 2005 .

[22]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[23]  Christoph Schwab,et al.  Fast deterministic pricing of options on Lévy driven assets , 2002 .

[24]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .