On Carnap and Popper Probability Functions
暂无分享,去创建一个
Al. 0 < Pr(A, B). A2. Pr(A, A) = 1. A-requirements A3. If FA B and FC =D, then Pr(A, C) = Pr(B, D). A4. If not F-B. then Pr(, A, B) = 1 Pr(A, B). A5. Pr(A & B, C) = Pr(A, B & C) x Pr(B, C). Bi. = Al. B2. = A2. B3. If Pr(B, D) = Pr(C, D) for every wff D of PC, B-requirements then Pr(A, B) = Pr(A, C). B4. If Pr(C, B) # 1 for at least one wff C of PC, then Pr(-A, B) = 1 Pr(A, B). B5. = A5. B6. Pr(A & B, C) = Pr(B & A, C).
[1] William Harper. Rational Belief Change, Popper Functions and Counterfactuals , 1975 .
[2] Bas C. van Fraassen,et al. Representational of conditional probabilities , 1976, J. Philos. Log..
[3] K. Popper,et al. The Logic of Scientific Discovery , 1960 .
[4] Robert Stalnaker. Probability and Conditionals , 1970, Philosophy of Science.
[5] Hugues Leblanc. On Requirements for Conditional Probability Functions , 1960, J. Symb. Log..