INTRINSIC ANALYSIS OF STATISTICAL ESTIMATION
暂无分享,去创建一个
[1] J. Burbea. Informative Geometry of Probability Spaces , 1984 .
[2] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[3] C. R. Rao,et al. Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .
[4] O. Barndorff-Nielsen,et al. Strings: mathematical theory and statistical examples , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[5] Jacob Burbea,et al. THE INFORMATION METRIC FOR UNIVARIATE LINEAR ELLIPTIC MODELS , 1988 .
[6] J. M. Oller. SOME GEOMETRICAL ASPECTS OF DATA ANALYSIS AND STATISTICS , 1989 .
[7] O. Barndorff-Nielsen. Parametric statistical models and likelihood , 1988 .
[8] H. Karcher. Riemannian center of mass and mollifier smoothing , 1977 .
[9] C. Atkinson. Rao's distance measure , 1981 .
[10] Shun-ichi Amari,et al. Differential-geometrical methods in statistics , 1985 .
[11] Peter E. Jupp,et al. A Unified View of the Theory of Directional Statistics, 1975-1988 , 1989 .
[12] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[13] W. Kendall. Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .
[14] W. Kendall. Convexity and the Hemisphere , 1991 .
[15] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[16] A. F. Mitchell,et al. The Mahalanobis distance and elliptic distributions , 1985 .
[17] N. Hicks. Notes on Differential Geometry , 1967 .
[18] E. Lehmann. A General Concept of Unbiasedness , 1951 .