Kriging with Ill-Known Variogram and Data

Kriging consists in estimating or predicting the spatial phenomenon at non sampled locations from an estimated random function. Although information necessary to properly select a unique random function model seems to be partially lacking, geostatistics in general, and the kriging methodology in particular, does not account for the incompleteness of the information that seems to pervade the procedure. On the one hand, the collected data may be tainted with errors that can be modelled by intervals or fuzzy intervals. On the other hand, the choice of parameter values for the theoretical variogram, an essential step, contains some degrees of freedom that is seldom acknowledged. In this paper we propose to account for epistemic uncertainty pervading the variogram parameters, and possibly the data set, by means of fuzzy interval uncertainty. We lay bare its impact on the kriging results, improving on previous attempts by Bardossy and colleagues in the late 1980's.

[1]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[2]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[3]  N. Cressie The origins of kriging , 1990 .

[4]  Didier Dubois,et al.  On the Variability of the Concept of Variance for Fuzzy Random Variables , 2009, IEEE Transactions on Fuzzy Systems.

[5]  Radko Mesiar,et al.  Fuzzy Interval Analysis , 2000 .

[6]  Steven Schockaert,et al.  Methods for Handling Imperfect Spatial Information , 2010, Studies in Fuzziness and Soft Computing.

[7]  Scott Ferson,et al.  What Monte Carlo methods cannot do , 1996 .

[8]  Michael Hanss,et al.  The transformation method for the simulation and analysis of systems with uncertain parameters , 2002, Fuzzy Sets Syst..

[9]  Didier Dubois,et al.  Gradual Numbers and Their Application to Fuzzy Interval Analysis , 2008, IEEE Transactions on Fuzzy Systems.

[10]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[11]  R. Mohan Srivastava,et al.  Philip and Watson—Quo vadunt? , 1986 .

[12]  Kevin Loquin,et al.  Possibilistic signal processing: How to handle noise? , 2010, Int. J. Approx. Reason..

[13]  P. Diamond Fuzzy kriging , 1989 .

[14]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[15]  A. Bárdossy,et al.  Kriging with imprecise (fuzzy) variograms. II: Application , 1990 .

[16]  Didier Dubois,et al.  Possibility theory and statistical reasoning , 2006, Comput. Stat. Data Anal..

[17]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[18]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[19]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[20]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[21]  Jon C. Helton,et al.  Alternative representations of epistemic uncertainty , 2004, Reliab. Eng. Syst. Saf..

[22]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[23]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[24]  W. E. Kelly,et al.  Imprecise (fuzzy) information in geostatistics , 1988 .

[25]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[26]  Ángeles Saavedra,et al.  Evaluation of the reserve of a granite deposit by fuzzy kriging , 2008 .

[27]  Didier Dubois,et al.  Joint propagation of probability and possibility in risk analysis: Towards a formal framework , 2007, Int. J. Approx. Reason..

[28]  O. Dubrule Comparing splines and kriging , 1984 .

[29]  G. S. Watson Smoothing and interpolation by kriging and with splines , 1984 .

[30]  Scott Ferson,et al.  Sensitivity analysis using probability bounding , 2006, Reliab. Eng. Syst. Saf..

[31]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[32]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .

[33]  Jef Caers,et al.  Modeling Spatial Uncertainty , 2011 .

[34]  D. Dubois,et al.  Additions of interactive fuzzy numbers , 1981 .

[35]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[36]  Didier Dubois,et al.  Kriging and Epistemic Uncertainty: A Critical Discussion , 2010, Methods for Handling Imperfect Spatial Information.

[37]  A. Bárdossy,et al.  Kriging with imprecise (fuzzy) variograms. I: Theory , 1990 .

[38]  Didier Dubois,et al.  Representing parametric probabilistic models tainted with imprecision , 2008, Fuzzy Sets Syst..

[39]  A. Yaglom,et al.  An Introduction to the Theory of Stationary Random Functions , 1963 .

[40]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[41]  Andre G. Journel,et al.  The deterministic side of geostatistics , 1985 .

[42]  Andre G. Journel,et al.  Geostatistics: Models and tools for the earth sciences , 1986 .

[43]  Phil Diamond Interval-valued random functions and the kriging of intervals , 1988 .

[44]  G. Shafer,et al.  Probability and Finance: It's Only a Game! , 2001 .