Exploration of the Brain’s White Matter Structure through Visual Abstraction and Multi-Scale Local Fiber Tract Contraction

We present a visualization technique for brain fiber tracts from DTI data that provides insight into the structure of white matter through visual abstraction. We achieve this abstraction by analyzing the local similarity of tract segment directions at different scales using a stepwise increase of the search range. Next, locally similar tract segments are moved toward each other in an iterative process, resulting in a local contraction of tracts perpendicular to the local tract direction at a given scale. This not only leads to the abstraction of the global structure of the white matter as represented by the tracts, but also creates volumetric voids. This increase of empty space decreases the mutual occlusion of tracts and, consequently, results in a better understanding of the brain's three-dimensional fiber tract structure. Our implementation supports an interactive and continuous transition between the original and the abstracted representations via various scale levels of similarity. We also support the selection of groups of tracts, which are highlighted and rendered with the abstracted visualization as context.

[1]  Nite Tanzarn Interviews and Focus Groups , 2008 .

[2]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  James V. Miller,et al.  Sheet-Like White Matter Fiber Tracts: Representation, Clustering, and Quantitative Analysis , 2011, MICCAI.

[4]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[5]  Ching-Kuang Shene,et al.  Hierarchical Streamline Bundles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[6]  Carl-Fredrik Westin,et al.  Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas , 2007, IEEE Transactions on Medical Imaging.

[7]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[8]  David H. Laidlaw,et al.  Exploring 3D DTI Fiber Tracts with Linked 2D Representations , 2009, IEEE Transactions on Visualization and Computer Graphics.

[9]  Alfred O. Hero,et al.  Fiber Tract Clustering on Manifolds With Dual Rooted-Graphs , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  David H. Laidlaw,et al.  Identifying White-Matter Fiber Bundles in DTI Data Using an Automated Proximity-Based Fiber-Clustering Method , 2008, IEEE Transactions on Visualization and Computer Graphics.

[11]  Vid Petrovic,et al.  Visualizing Whole-Brain DTI Tractography with GPU-based Tuboids and LoD Management , 2007, IEEE Transactions on Visualization and Computer Graphics.

[12]  Carl-Fredrik Westin,et al.  Delineating white matter structure in diffusion tensor MRI with anisotropy creases , 2007, Medical Image Anal..

[13]  Brian A. Wandell,et al.  800Exploration of the brain's white matter pathways with dynamic queries , 2004, IEEE Visualization 2004.

[14]  Carl-Fredrik Westin,et al.  Diffusion Tensor Visualization with Glyph Packing , 2006, IEEE Transactions on Visualization and Computer Graphics.

[15]  David H. Laidlaw,et al.  Exploring Brain Connectivity with Two-Dimensional Neural Maps , 2012, IEEE Transactions on Visualization and Computer Graphics.

[16]  Carl-Fredrik Westin,et al.  Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data , 2014 .

[17]  W. Eric L. Grimson,et al.  A unified framework for clustering and quantitative analysis of white matter fiber tracts , 2008, Medical Image Anal..

[18]  David F. Tate,et al.  A Novel Interface for Interactive Exploration of DTI Fibers , 2009, IEEE Transactions on Visualization and Computer Graphics.

[19]  Guido Gerig,et al.  Towards a shape model of white matter fiber bundles using diffusion tensor MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[20]  Douglas L. Rosene,et al.  The Geometric Structure of the Brain Fiber Pathways , 2012, Science.

[21]  Daniel S. Margulies,et al.  Three-Dimensional Mean-Shift Edge Bundling for the Visualization of Functional Connectivity in the Brain , 2012, IEEE Transactions on Visualization and Computer Graphics.

[22]  Tobias Isenberg,et al.  Depth-Dependent Halos: Illustrative Rendering of Dense Line Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[23]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[24]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[25]  Katy Bennett,et al.  Interviews and Focus Groups , 2001 .

[26]  Nicholas Ayache,et al.  Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration , 2010, IEEE Transactions on Medical Imaging.

[27]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[28]  Hans-Peter Seidel,et al.  Virtual Klingler Dissection: Putting Fibers into Context , 2008, Comput. Graph. Forum.

[29]  Jos B. T. M. Roerdink,et al.  Data-Driven Visualization of Functional Brain Regions from Resting State fMRI Data , 2011, VMV.

[30]  Tony DeRose,et al.  Toolglass and magic lenses: the see-through interface , 1993, SIGGRAPH.

[31]  Tobias Isenberg A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractography , 2015, Visualization and Processing of Higher Order Descriptors for Multi-Valued Data.

[32]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[33]  A. Anderson,et al.  Classification and quantification of neuronal fiber pathways using diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[34]  Bernd Hamann,et al.  Direct visualization of fiber information by coherence , 2009, International Journal of Computer Assisted Radiology and Surgery.

[35]  Christopher Nimsky,et al.  Visualization of diffusion tensor data using evenly spaced streamlines , 2005 .

[36]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[37]  Hans-Peter Seidel,et al.  Topological Visualization of Brain Diffusion MRI Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[38]  Heinz-Otto Peitgen,et al.  Brain structure visualization using spectral fiber clustering , 2006, SIGGRAPH '06.

[39]  Carl-Fredrik Westin,et al.  Clustering Fiber Traces Using Normalized Cuts , 2004, MICCAI.

[40]  Frans Vos,et al.  Fast and reproducible fiber bundle selection in DTI visualization , 2005, VIS 05. IEEE Visualization, 2005..

[41]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[42]  Randolph G. Bias,et al.  Research Methods for Human-Computer Interaction , 2010, J. Assoc. Inf. Sci. Technol..

[43]  Anna Vilanova,et al.  DTI visualization with streamsurfaces and evenly-spaced volume seeding , 2004, VISSYM'04.

[44]  Tobias Isenberg,et al.  DTI in Context: Illustrating Brain Fiber Tracts In Situ , 2010, Comput. Graph. Forum.

[45]  David H. Laidlaw,et al.  Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[46]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[47]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[48]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.