Highly Reversible Lithium Storage in Nanostructured Silicon

Anode materials of nanostructured silicon have been prepared by physical vapor deposition and characterized using electrochemical methods. The electrodes were prepared in thin-film form as nanocrystalline particles (12 nm mean diameter) and as continuous amorphous thin films (100 nm thick). The nanocrystalline silicon exhibited specific capacities of around 1100 mAh/g with a 50% capacity retention after 50 cycles. The amorphous thin-film electrodes exhibited initial capacities of 3500 mAh/g with a stable capacity of 2000 mAh/g over 50 cycles. We suggest that the nanoscale dimensions of the silicon circumvents conventional mechanisms of mechanical deterioration, permitting good cycle life.

[1]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[2]  William N. Sharpe,et al.  Fatigue of polycrystalline silicon under long-term cyclic loading , 2003 .

[3]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[4]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[5]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[6]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[7]  L. M. Brown Electron Energy Loss Spectrometry in the Electron Microscope , 1999 .

[8]  Rafael Reif,et al.  Electrochemical and Solid-Sates Letters , 1999 .

[9]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[10]  J. Yamaki,et al.  Rechargeable Lithium Anodes , 1998 .

[11]  R. Yazami,et al.  CHEMICAL STABILITY OF LITHIATED-HOPG WITH SOME ORGANIC ELECTROLYTES , 1998 .

[12]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[13]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[14]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[15]  R. Huggins Solid State Ionics , 1989 .

[16]  Reinhard Nesper,et al.  Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .

[17]  C. V. D. Marel,et al.  The phase diagram of the system lithium-silicon , 1985 .

[18]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[19]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[20]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[21]  J. Besenhard The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes , 1976 .