Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development

Animal development relies on repeated symmetry breaking, e.g., during axial specification, gastrulation, nervous system lateralization, lumen formation, or organ coiling. It is crucial that asymmetry increases during these processes, since this will generate higher morphological and functional specialization. On one hand, cue-dependent symmetry breaking is used during these processes which is the consequence of developmental signaling. On the other hand, cells isolated from developing animals also undergo symmetry breaking in the absence of signaling cues. These spontaneously arising asymmetries are not well understood. However, an ever growing body of evidence suggests that these asymmetries can originate from spontaneous symmetry breaking and self-organization of molecular assemblies into polarized entities on mesoscopic scales. Recent discoveries will be highlighted and it will be discussed how actomyosin and microtubule networks serve as common biomechanical systems with inherent abilities to drive spontaneous symmetry breaking.

[1]  Daniel T. N. Chen,et al.  Spontaneous motion in hierarchically assembled active matter , 2012, Nature.

[2]  C C Cunningham,et al.  Actin polymerization and intracellular solvent flow in cell surface blebbing , 1995, The Journal of cell biology.

[3]  J. Nance,et al.  Elaborating polarity: PAR proteins and the cytoskeleton , 2011, Development.

[4]  W. Weis,et al.  A Polarized Epithelium Organized by β- and α-Catenin Predates Cadherin and Metazoan Origins , 2011, Science.

[5]  C. Tabin,et al.  A molecular pathway determining left-right asymmetry in chick embryogenesis , 1995, Cell.

[6]  W. Wood Evidence from reversal of handedness in C. elegans embryos for early cell interactions determining cell fates , 1991, Nature.

[7]  A. Hyman,et al.  Acto-myosin reorganization and PAR polarity in C. elegans , 2007, Development.

[8]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[9]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[10]  S. Grill,et al.  Cell polarity: mechanochemical patterning. , 2013, Trends in cell biology.

[11]  Andrew Callan-Jones,et al.  Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells , 2015, Cell.

[12]  J. Spatz,et al.  Adaptive force transmission in amoeboid cell migration , 2009, Nature Cell Biology.

[13]  Amy S. Gladfelter,et al.  Scaffold-mediated symmetry breaking by Cdc42p , 2003, Nature Cell Biology.

[14]  Holy,et al.  Stochastic dynamics of microtubules: A model for caps and catastrophes. , 1994, Physical review letters.

[15]  S. Noselli,et al.  The myosin ID pathway and left–right asymmetry in Drosophila , 2014, Genesis.

[16]  Jeffrey J Hsu,et al.  Left-Right Symmetry Breaking in Tissue Morphogenesis via Cytoskeletal Mechanics , 2012, Circulation research.

[17]  E. Nogales,et al.  Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins , 2015, Cell.

[18]  M. Monden,et al.  Calpain activation in plasma membrane bleb formation during tert-butyl hydroperoxide-induced rat hepatocyte injury. , 1996, Gastroenterology.

[19]  C. Dotti,et al.  The role of local actin instability in axon formation. , 1999, Science.

[20]  Jen-Yi Lee,et al.  Extracellular control of PAR protein localization during asymmetric cell division in the C. elegans embryo , 2010, Development.

[21]  H. Kueh,et al.  Structural Plasticity in Actin and Tubulin Polymer Dynamics , 2009, Science.

[22]  D. Weisblat,et al.  Asymmetrization of first cleavage by transient disassembly of one spindle pole aster in the leech Helobdella robusta. , 2006, Developmental biology.

[23]  R. Moon,et al.  Wnt5a Control of Cell Polarity and Directional Movement by Polarized Redistribution of Adhesion Receptors , 2008, Science.

[24]  S. Mango,et al.  CYK-4/GAP Provides a Localized Cue to Initiate Anteroposterior Polarity upon Fertilization , 2006, Science.

[25]  S. Shi,et al.  Regulation of microtubule stability and organization by mammalian Par3 in specifying neuronal polarity. , 2013, Developmental cell.

[26]  B. Agranoff,et al.  Outgrowth and maintenance of neurites from cultured goldfish retinal ganglion cells , 1981, Brain Research.

[27]  H. Yost,et al.  Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut , 2005, Development.

[28]  Chwee Teck Lim,et al.  Guidance of collective cell migration by substrate geometry. , 2013, Integrative biology : quantitative biosciences from nano to macro.

[29]  Guangliang Wang,et al.  Regional cell shape changes control form and function of Kupffer's vesicle in the zebrafish embryo. , 2012, Developmental biology.

[30]  S. Ishiwata,et al.  Right-handed rotation of an actin filament in an in vitro motile system , 1993, Nature.

[31]  Hans Meinhardt,et al.  Models of biological pattern formation: from elementary steps to the organization of embryonic axes. , 2008, Current topics in developmental biology.

[32]  S. Noselli,et al.  Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa , 2014, EMBO reports.

[33]  S. Muthuswamy,et al.  Rotational motion during three-dimensional morphogenesis of mammary epithelial acini relates to laminin matrix assembly , 2012, Proceedings of the National Academy of Sciences.

[34]  T. Lu,et al.  Nonequilibrium self-assembly of linear fibers: microscopic treatment of growth, decay, catastrophe and rescue , 2006, Physical biology.

[35]  Patrick W. Oakes,et al.  Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation , 2014, Nature Communications.

[36]  J. Zallen,et al.  Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension , 2014, The Journal of cell biology.

[37]  Walter Birchmeier,et al.  Balancing cell adhesion and Wnt signaling, the key role of β-catenin , 2006 .

[38]  Lesilee S. Rose,et al.  Embryonic handedness choice in C. elegans involves the Gα protein GPA-16 , 2003 .

[39]  D. Shakes,et al.  Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. , 2000, Development.

[40]  Gaudenz Danuser,et al.  Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility , 2007, The Journal of cell biology.

[41]  Oliver Hobert,et al.  Early Embryonic Programming of Neuronal Left/Right Asymmetry in C. elegans , 2006, Current Biology.

[42]  Tim Sanchez,et al.  Topology and dynamics of active nematic vesicles , 2014, Science.

[43]  C. Pohl,et al.  Coupling of rotational cortical flow, asymmetric midbody positioning, and spindle rotation mediates dorsoventral axis formation in C. elegans. , 2014, Developmental cell.

[44]  Hans Meinhardt,et al.  Global cell sorting in the C. elegans embryo defines a new mechanism for pattern formation. , 2006, Developmental biology.

[45]  K. Anderson,et al.  Morphogenesis of the node and notochord: The cellular basis for the establishment and maintenance of left–right asymmetry in the mouse , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[46]  A. Dorresteijn,et al.  The site of fertilisation determines dorsoventral polarity but not chirality in the zebra mussel embryo , 1998, Zygote.

[47]  Wei Li,et al.  Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the cell polarity in neuronal migration , 2013, Proceedings of the National Academy of Sciences.

[48]  Jennifer A Zallen,et al.  Myosin II dynamics are regulated by tension in intercalating cells. , 2009, Developmental cell.

[49]  Pierre-François Lenne,et al.  Planar polarized actomyosin contractile flows control epithelial junction remodelling , 2010, Nature.

[50]  H. Yost,et al.  Left–right development: The roles of nodal cilia , 2000, Current Biology.

[51]  M. Negishi,et al.  R-Ras controls axon branching through afadin in cortical neurons , 2012, Molecular biology of the cell.

[52]  T. Mitchison,et al.  Cell polarization during monopolar cytokinesis , 2008, The Journal of cell biology.

[53]  Mehmet Toner,et al.  Directional decisions during neutrophil chemotaxis inside bifurcating channels. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[54]  S. Leibler,et al.  Physical Properties Determining Self-Organization of Motors and Microtubules , 2001, Science.

[55]  R. Margolis,et al.  An oscillatory mode for microtubule assembly. , 1987, The EMBO journal.

[56]  Jean-Pierre Julien,et al.  Axonal transport deficits and neurodegenerative diseases , 2013, Nature Reviews Neuroscience.

[57]  Dene L. Farrell,et al.  A positional Toll receptor code directs convergent extension in Drosophila , 2014, Nature.

[58]  Günther Woehlke,et al.  Molecular motors: Switching on kinesin , 2001, Nature.

[59]  E. Nogales,et al.  Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly , 2005, Nature.

[60]  K. Matsuno,et al.  An unconventional myosin in Drosophila reverses the default handedness in visceral organs , 2006, Nature.

[61]  Anthony Santella,et al.  Actomyosin-based Self-organization of cell internalization during C. elegans gastrulation , 2012, BMC Biology.

[62]  B. Durand,et al.  Two rotating cilia in the node cavity are sufficient to break left–right symmetry in the mouse embryo , 2012, Nature Communications.

[63]  N. Hirokawa,et al.  Abnormal nodal flow precedes situs inversus in iv and inv mice. , 1999, Molecular cell.

[64]  S. Leibler,et al.  Self-organization of microtubules and motors , 1997, Nature.

[65]  Iva Greenwald,et al.  Notch and the Awesome Power of Genetics , 2012, Genetics.

[66]  J. C. Ambrose,et al.  Spatial organization of plant cortical microtubules: close encounters of the 2D kind. , 2009, Trends in cell biology.

[67]  S. Grill,et al.  Active chiral fluids , 2012, The European physical journal. E, Soft matter.

[68]  K. Homma,et al.  Myosin VI walks "wiggly" on actin with large and variable tilting. , 2007, Molecular cell.

[69]  J. Axelrod,et al.  Regulation of PCP by the Fat signaling pathway , 2013, Genes & development.

[70]  R. Kuroda,et al.  Chiral blastomere arrangement dictates zygotic left–right asymmetry pathway in snails , 2009, Nature.

[71]  J. Tabony,et al.  Microtubule self-organization is gravity-dependent. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Ahringer,et al.  Cell Polarity in Eggs and Epithelia: Parallels and Diversity , 2010, Cell.

[73]  Gary Freeman,et al.  The developmental genetics of dextrality and sinistrality in the gastropodLymnaea peregra , 1982, Wilhelm Roux's archives of developmental biology.

[74]  Tobias Meyer,et al.  Robust Neuronal Symmetry Breaking by Ras-Triggered Local Positive Feedback , 2008, Current Biology.

[75]  David Bilder,et al.  Global Tissue Revolutions in a Morphogenetic Movement Controlling Elongation , 2011, Science.

[76]  M. Corner,et al.  Neurite formation in dissociated cerebral cortex in vitro: evidence for clockwise outgrowth and autotopic contacts , 1980, Brain Research.

[77]  D. Weitz,et al.  Elastic Behavior of Cross-Linked and Bundled Actin Networks , 2004, Science.

[78]  W. Kabsch,et al.  Atomic model of the actin filament , 1990, Nature.

[79]  A. Hyman,et al.  XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules , 2013, Nature Cell Biology.

[80]  J. Xu,et al.  Polarity reveals intrinsic cell chirality , 2007, Proceedings of the National Academy of Sciences.

[81]  Steven N. Hird,et al.  Cortical actin movements during the first cell cycle of the Caenorhabditis elegans embryo. , 1996, Journal of cell science.

[82]  D. Supp,et al.  Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. , 1999, Development.

[83]  L. Blanchoin,et al.  Actin polymerization or myosin contraction: two ways to build up cortical tension for symmetry breaking , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[84]  W. Wood,et al.  Maternal effect of low temperature on handedness determination in C. elegans embryos. , 1996, Developmental genetics.

[85]  K. Matsuno,et al.  Class I Myosins Have Overlapping and Specialized Functions in Left-Right Asymmetric Development in Drosophila , 2015, Genetics.

[86]  L. Rice,et al.  JCB_201407095 1..12 , 2014 .

[87]  Bruce Bowerman,et al.  Symmetry breaking in biology. , 2010, Cold Spring Harbor perspectives in biology.

[88]  C. Pohl,et al.  A function for the midbody remnant in embryonic patterning , 2014, Communicative & integrative biology.

[89]  Richard Gordon,et al.  Simulation of the effects of microtubules in the cortical rotation of amphibian embryos in normal and zero gravity , 2012, Biosyst..

[90]  Qiang Sun,et al.  Competition between human cells by entosis , 2014, Cell Research.

[91]  Tadao Sugiura,et al.  Shootin1 interacts with actin retrograde flow and L1-CAM to promote axon outgrowth , 2008, Neuroscience Research.

[92]  C. Heisenberg,et al.  Forces in Tissue Morphogenesis and Patterning , 2013, Cell.

[93]  C. Dahmann,et al.  Microtubule Polarity Predicts Direction of Egg Chamber Rotation in Drosophila , 2013, Current Biology.

[94]  L. Mahadevan,et al.  Non-equilibration of hydrostatic pressure in blebbing cells , 2005, Nature.

[95]  D. Weisblat Asymmetric cell divisions in the early embryo of the leech Helobdella robusta. , 2007, Progress in molecular and subcellular biology.

[96]  Shigeru Kondo,et al.  Rotating pigment cells exhibit an intrinsic chirality , 2015, Genes to cells : devoted to molecular & cellular mechanisms.

[97]  Julie A. Theriot,et al.  Cooperative symmetry-breaking by actin polymerization in a model for cell motility , 1999, Nature Cell Biology.

[98]  G. Banker,et al.  Experimentally induced alteration in the polarity of developing neurons , 1987, Nature.

[99]  Guillaume Charras,et al.  Actin cortex mechanics and cellular morphogenesis. , 2012, Trends in cell biology.

[100]  Bob Goldstein,et al.  Wnt/Frizzled Signaling Controls C. elegans Gastrulation by Activating Actomyosin Contractility , 2006, Current Biology.

[101]  S. Thitamadee,et al.  Microtubule basis for left-handed helical growth in Arabidopsis , 2002, Nature.

[102]  Jason C. Mills,et al.  Apoptotic Membrane Blebbing Is Regulated by Myosin Light Chain Phosphorylation , 1998, The Journal of cell biology.

[103]  T. L. Hill,et al.  Synchronous oscillations in microtubule polymerization. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[104]  S. J. Smith,et al.  Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone , 1988, The Journal of cell biology.

[105]  M. Kirschner,et al.  Microtubule assembly nucleated by isolated centrosomes , 1984, Nature.

[106]  E. Bi,et al.  Cell Polarization and Cytokinesis in Budding Yeast , 2012, Genetics.

[107]  Lani Wu,et al.  Spontaneous Cell Polarization Through Actomyosin-Based Delivery of the Cdc42 GTPase , 2003, Science.

[108]  D. Weisblat,et al.  D quadrant specification in the leech Helobdella: actomyosin contractility controls the unequal cleavage of the CD blastomere. , 2009, Developmental biology.

[109]  W. H. Lewis The role of a superficial plasmagel layer in changes of form, locomotion and division of cells in tissue cultures , 1939, Protoplasma.

[110]  M. Levin,et al.  Early, nonciliary role for microtubule proteins in left–right patterning is conserved across kingdoms , 2012, Proceedings of the National Academy of Sciences.

[111]  Erik E. Griffin,et al.  Microtubules induce self-organization of polarized PAR domains in C. elegans zygotes , 2011, Nature Cell Biology.

[112]  Jasper van der Gucht,et al.  Stress release drives symmetry breaking for actin-based movement , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[113]  S. Noselli,et al.  Drosophila left/right asymmetry establishment is controlled by the Hox gene abdominal-B. , 2013, Developmental cell.

[114]  E. Wieschaus,et al.  Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation , 2014, Nature.

[115]  Michael Sixt,et al.  Mechanical modes of 'amoeboid' cell migration. , 2009, Current opinion in cell biology.

[116]  R. Buxbaum,et al.  F-actin and microtubule suspensions as indeterminate fluids. , 1987, Science.

[117]  Yutaka Sumino,et al.  Large-scale vortex lattice emerging from collectively moving microtubules , 2012, Nature.

[118]  K. Matsuno,et al.  Canonical Wnt signaling in the visceral muscle is required for left–right asymmetric development of the Drosophila midgut , 2012, Mechanisms of Development.

[119]  L. Sulak,et al.  Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation , 2004, Nature.

[120]  T. Soldati,et al.  Dissection of amoeboid movement into two mechanically distinct modes , 2006, Journal of Cell Science.

[121]  Charles Kervrann,et al.  Confinement induces actin flow in a meiotic cytoplasm , 2012, Proceedings of the National Academy of Sciences.

[122]  H. Katoh,et al.  R-Ras Controls Axon Specification Upstream of Glycogen Synthase Kinase-3β through Integrin-linked Kinase* , 2007, Journal of Biological Chemistry.

[123]  J. Nance,et al.  Polarity and cell fate specification in the control of Caenorhabditis elegans gastrulation , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[124]  R. Schnabel,et al.  Establishment of left-right asymmetry in the Caenorhabditis elegans embryo: a multistep process involving a series of inductive events. , 1995, Development.

[125]  Mina J. Bissell,et al.  Coherent angular motion in the establishment of multicellular architecture of glandular tissues , 2012, Proceedings of the National Academy of Sciences.

[126]  G. M. Davis,et al.  The chicken left right organizer has nonmotile cilia which are lost in a stage-dependent manner in the talpid3 ciliopathy , 2014, Genesis.

[127]  Juergen A. Knoblich,et al.  Asymmetric cell division: recent developments and their implications for tumour biology , 2010, Nature Reviews Molecular Cell Biology.

[128]  Rong Li,et al.  Symmetry breaking and polarity establishment during mouse oocyte maturation , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[129]  M. Zwart,et al.  Drosophila Anterior-Posterior Polarity Requires Actin-Dependent PAR-1 Recruitment to the Oocyte Posterior , 2006, Current Biology.

[130]  B. Thompson,et al.  The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells , 2013, The Journal of cell biology.

[131]  Owen L. Lewis,et al.  Actin-myosin spatial patterns from a simplified isotropic viscoelastic model. , 2014, Biophysical journal.

[132]  Indrani Bose,et al.  Singularity in Polarization: Rewiring Yeast Cells to Make Two Buds , 2009, Cell.

[133]  Erwin Frey,et al.  Polar patterns of driven filaments , 2010, Nature.

[134]  T. Hoson,et al.  Cortical microtubules are responsible for gravity resistance in plants , 2010, Plant signaling & behavior.

[135]  M. Kirschner,et al.  Beyond self-assembly: From microtubules to morphogenesis , 1986, Cell.

[136]  R. Nusse,et al.  Towards an integrated view of Wnt signaling in development , 2009, Development.

[137]  S. Grill,et al.  Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows , 2010, Nature.

[138]  P. Rørth,et al.  Fellow travellers: emergent properties of collective cell migration , 2012, EMBO reports.

[139]  A. Wodarz Establishing cell polarity in development , 2002, Nature Cell Biology.

[140]  Bruce Bowerman,et al.  Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm , 1997, Cell.

[141]  Siegfried Roth,et al.  Symmetry breaking during Drosophila oogenesis. , 2009, Cold Spring Harbor perspectives in biology.

[142]  S. Noselli,et al.  Type ID unconventional myosin controls left–right asymmetry in Drosophila , 2006, Nature.

[143]  D. Supp,et al.  Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice , 1997, Nature.

[144]  N. Hirokawa,et al.  FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination , 2005, Nature.

[145]  S. Shi,et al.  Par proteins and neuronal polarity , 2011, Developmental neurobiology.

[146]  S. Grinstein,et al.  Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity , 2011, Nature Cell Biology.

[147]  G. Vunjak‐Novakovic,et al.  Micropatterning of cells reveals chiral morphogenesis , 2013, Stem Cell Research & Therapy.

[148]  Dene L. Farrell,et al.  Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation , 2014, Proceedings of the National Academy of Sciences.

[149]  J. Tabony,et al.  Gravitational symmetry breaking in microtubular dissipative structures. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[150]  J. Tinevez,et al.  Polar actomyosin contractility destabilizes the position of the cytokinetic furrow , 2011, Nature.

[151]  Petra Schwille,et al.  Myosin motors fragment and compact membrane-bound actin filaments , 2013, eLife.

[152]  M. Brueckner,et al.  Two Populations of Node Monocilia Initiate Left-Right Asymmetry in the Mouse , 2003, Cell.

[153]  F. Jülicher,et al.  Role of tensile stress in actin gels and a symmetry-breaking instability , 2004, The European physical journal. E, Soft matter.

[154]  S. Leibler,et al.  Physical aspects of the growth and regulation of microtubule structures. , 1993, Physical review letters.

[155]  Jennifer A Zallen,et al.  Patterned gene expression directs bipolar planar polarity in Drosophila. , 2004, Developmental cell.

[156]  L. Pelletier,et al.  Centrosome asymmetry and inheritance during animal development. , 2012, Current opinion in cell biology.

[157]  Wouter-Jan Rappel,et al.  Self-organized Vortex State in Two-Dimensional Dictyostelium Dynamics , 1998, patt-sol/9811001.

[158]  F. Murakami,et al.  Autonomous right-screw rotation of growth cone filopodia drives neurite turning , 2010, The Journal of cell biology.

[159]  G. Gundersen,et al.  Beyond polymer polarity: how the cytoskeleton builds a polarized cell , 2008, Nature Reviews Molecular Cell Biology.

[160]  S. Noselli,et al.  The Atypical Cadherin Dachsous Controls Left-Right Asymmetry in Drosophila. , 2015, Developmental cell.

[161]  Felix Oswald,et al.  Forces Driving Epithelial Spreading in Zebrafish Gastrulation , 2012, Science.

[162]  Simone Superina,et al.  Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia , 2010, Nature Cell Biology.

[163]  M. Danilchik,et al.  Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry? , 2006, Development.

[164]  E. Schierenberg,et al.  Plectus - a stepping stone in embryonic cell lineage evolution of nematodes , 2012, EvoDevo.

[165]  Erwin Frey,et al.  Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops , 2013, Nature Communications.

[166]  R. Schnabel,et al.  Global cell sorting is mediated by local cell-cell interactions in the C. elegans embryo. , 2006, Developmental biology.

[167]  L. Wolpert,et al.  The development of handedness in left/right asymmetry. , 1990, Development.

[168]  L. Beloussov,et al.  Asymmetrical rotations of blastomeres in early cleavage of gastropoda , 1975, Wilhelm Roux's archives of developmental biology.

[169]  C. Sykes,et al.  A Physical Model of Cellular Symmetry Breaking , 2011 .

[170]  Y. Bellaïche,et al.  Cell division orientation and planar cell polarity pathways. , 2009, Seminars in cell & developmental biology.

[171]  Ravi A. Desai,et al.  Force transmission during adhesion-independent migration , 2015, Nature Cell Biology.

[172]  A. Dorresteijn,et al.  Multiple, alternative cleavage patterns precede uniform larval morphology during normal development of Dreissena polymorpha (Mollusca, Lamellibranchia) , 1995, Roux's archives of developmental biology.

[173]  R. Schnabel,et al.  glp-1 and inductions establishing embryonic axes in C. elegans. , 1994, Development.

[174]  G. Danuser,et al.  Coordination of actin filament and microtubule dynamics during neurite outgrowth. , 2008, Developmental cell.

[175]  Y. Saijoh,et al.  Determination of left–right patterning of the mouse embryo by artificial nodal flow , 2002, Nature.

[176]  Eric F. Wieschaus,et al.  folded gastrulation, cell shape change and the control of myosin localization , 2005, Development.

[177]  D. Odde,et al.  Cell-Length-Dependent Microtubule Accumulation during Polarization , 2010, Current Biology.

[178]  J. Bamburg,et al.  ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization , 2007, Journal of Cell Science.

[179]  C. Wright,et al.  Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? , 2014, Developmental biology.

[180]  Y. Jan,et al.  Hippocampal Neuronal Polarity Specified by Spatially Localized mPar3/mPar6 and PI 3-Kinase Activity , 2003, Cell.

[181]  Pierre-François Lenne,et al.  Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis , 2008, Nature Cell Biology.

[182]  Sophie G. Martin,et al.  Spontaneous Cdc42 Polarization Independent of GDI-Mediated Extraction and Actin-Based Trafficking , 2015, PLoS biology.

[183]  G. Vunjak‐Novakovic,et al.  Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry , 2011, Proceedings of the National Academy of Sciences.

[184]  E. Wieschaus,et al.  Two new roles for the Drosophila AP patterning system in early morphogenesis. , 2001, Development.

[185]  Julie Ahringer,et al.  Systematic genetic interaction screens uncover cell polarity regulators and functional redundancy , 2012, Nature Cell Biology.

[186]  Bob Goldstein,et al.  Mechanisms of cell positioning during C. elegans gastrulation , 2003, Development.

[187]  Sudipto Roy,et al.  Left–right asymmetry: cilia stir up new surprises in the node , 2013, Open Biology.

[188]  A. Vilfan Twirling motion of actin filaments in gliding assays with nonprocessive Myosin motors. , 2009, Biophysical journal.

[189]  B. Agranoff,et al.  Clockwise growth of neurites from retinal explants , 1977, Science.

[190]  Bob Goldstein,et al.  Triggering a Cell Shape Change by Exploiting Preexisting Actomyosin Contractions , 2012, Science.

[191]  Geraldine Seydoux,et al.  The PAR network: redundancy and robustness in a symmetry-breaking system , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[192]  Walter Birchmeier,et al.  Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. , 2006, Current opinion in genetics & development.

[193]  J. Priess,et al.  Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. , 2004, Developmental cell.

[194]  J. Priess,et al.  C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation , 2003, Development.

[195]  Hitoshi Sawa,et al.  Wnt Regulates Spindle Asymmetry to Generate Asymmetric Nuclear β-Catenin in C. elegans , 2011, Cell.

[196]  Z. Dogic,et al.  Cilia-Like Beating of Active Microtubule Bundles , 2011, Science.

[197]  F. Chang,et al.  Electrochemical Regulation of Budding Yeast Polarity , 2014, PLoS biology.

[198]  L. Cramer Mechanism of cell rear retraction in migrating cells. , 2013, Current opinion in cell biology.

[199]  Margaret L. Gardel,et al.  Forcing cells into shape: the mechanics of actomyosin contractility , 2015, Nature Reviews Molecular Cell Biology.

[200]  A. Sturtevant INHERITANCE OF DIRECTION OF COILLING IN LIMNAEA. , 1923, Science.

[201]  L. Goldstein,et al.  Identification of the gene for fly non‐muscle myosin heavy chain: Drosophila myosin heavy chains are encoded by a gene family. , 1989, The EMBO journal.

[202]  Eric F. Wieschaus,et al.  Pulsed contractions of an actin–myosin network drive apical constriction , 2009, Nature.

[203]  M. Blum,et al.  Cilia-Driven Leftward Flow Determines Laterality in Xenopus , 2007, Current Biology.

[204]  S. Ware,et al.  Disorders of left–right asymmetry: Heterotaxy and situs inversus , 2009, American journal of medical genetics. Part C, Seminars in medical genetics.

[205]  J. White,et al.  Cortical flow in animal cells. , 1988, Science.

[206]  Jean-Jacques Meister,et al.  Force transmission in migrating cells , 2010, The Journal of cell biology.

[207]  R. Flavell,et al.  Myosin I: From yeast to human , 2008, Cellular and Molecular Life Sciences.

[208]  Yuichiro Shibazaki,et al.  Body Handedness Is Directed by Genetically Determined Cytoskeletal Dynamics in the Early Embryo , 2004, Current Biology.

[209]  Juergen A. Knoblich,et al.  Organogenesis in a dish: Modeling development and disease using organoid technologies , 2014, Science.

[210]  M. Schilstra,et al.  A simple formulation of microtubule dynamics: quantitative implications of the dynamic instability of microtubule populations in vivo and in vitro. , 1989, Journal of cell science.

[211]  Jessica N. Mazerik,et al.  Membrane-Bound Myo1c Powers Asymmetric Motility of Actin Filaments , 2012, Current Biology.

[212]  Ivan V. Gregoretti,et al.  Analysis of a mesoscopic stochastic model of microtubule dynamic instability. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[213]  R. Voituriez,et al.  Cell-sized liposomes reveal how actomyosin cortical tension drives shape change , 2013, Proceedings of the National Academy of Sciences.

[214]  A. Hyman,et al.  Polarization of PAR Proteins by Advective Triggering of a Pattern-Forming System , 2011, Science.

[215]  Kelly Smith,et al.  A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality , 2013, Nature Communications.

[216]  T. Ando,et al.  Left–right asymmetry is formed in individual cells by intrinsic cell chirality , 2014, Mechanisms of Development.

[217]  Matthew W. Kelley,et al.  Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton , 2013, PLoS biology.

[218]  J. Beausang,et al.  Twirling of actin by myosins II and V observed via polarized TIRF in a modified gliding assay. , 2006, Biophysical journal.

[219]  J. Zallen,et al.  Regulation of cytoskeletal organization and junctional remodeling by the atypical cadherin Fat , 2013, Development.

[220]  Hiroo Fukuda,et al.  Initiation of Cell Wall Pattern by a Rho- and Microtubule-Driven Symmetry Breaking , 2012, Science.

[221]  A. Hyman,et al.  Timing and mechanism of the initial cue establishing handed left–right asymmetry in Caenorhabditis elegans embryos , 2014, Genesis.

[222]  Erik Sahai,et al.  Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis , 2003, Nature Cell Biology.

[223]  Lesilee S. Rose,et al.  Embryonic handedness choice in C. elegans involves the Galpha protein GPA-16. , 2003, Development.

[224]  Mineo Yasuda,et al.  Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart , 2004, Anatomy and Embryology.

[225]  F. Y. Leong Physical explanation of coupled cell-cell rotational behavior and interfacial morphology: a particle dynamics model. , 2013, Biophysical journal.

[226]  K. Sawamoto,et al.  Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia , 2010, Nature Cell Biology.

[227]  T. Ando,et al.  Chirality in Planar Cell Shape Contributes to Left-Right Asymmetric Epithelial Morphogenesis , 2011, Science.

[228]  S. Strome Asymmetric movements of cytoplasmic components in Caenorhabditis elegans zygotes. , 1986, Journal of embryology and experimental morphology.

[229]  D. Supp,et al.  Conserved left–right asymmetry of nodal expression and alterations in murine situs inversus , 1996, Nature.

[230]  G. Salbreux,et al.  Hydrodynamics of cellular cortical flows and the formation of contractile rings. , 2009, Physical review letters.

[231]  Cori Bargmann,et al.  Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans , 2011, Development.

[232]  K. Mallick,et al.  Nonequilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis. , 2008, Biophysical journal.

[233]  E. Nogales An electron microscopy journey in the study of microtubule structure and dynamics , 2015, Protein science : a publication of the Protein Society.

[234]  Steven N. Hird,et al.  Specification of the anteroposterior axis in Caenorhabditis elegans. , 1996, Development.

[235]  Y. Saijoh,et al.  Left–right asymmetric expression of the TGFβ-family member lefty in mouse embryos , 1996, Nature.

[236]  C. Pohl Left-right patterning in the C. elegans embryo , 2011, Communicative & integrative biology.

[237]  S. Grill Growing up is stressful: biophysical laws of morphogenesis. , 2011, Current opinion in genetics & development.

[238]  R. Grosse,et al.  G-protein-coupled receptor signaling and polarized actin dynamics drive cell-in-cell invasion , 2014, eLife.

[239]  G. Malacinski,et al.  Early development of Xenopus embryos is affected by simulated gravity. , 1994, Advances in space research : the official journal of the Committee on Space Research.

[240]  P. Schwille,et al.  Minimal systems to study membrane-cytoskeleton interactions. , 2012, Current opinion in biotechnology.

[241]  Erin L. Barnhart,et al.  Balance between cell−substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes , 2015, Proceedings of the National Academy of Sciences.

[242]  E. Schierenberg,et al.  Evolution of embryonic development in nematodes , 2011, EvoDevo.

[243]  T. Laux,et al.  Helical Growth of the Arabidopsis Mutant tortifolia1 Reveals a Plant-Specific Microtubule-Associated Protein , 2004, Current Biology.

[244]  Y. Mishina,et al.  Establishment of left–right asymmetry in vertebrate development: the node in mouse embryos , 2013, Cellular and Molecular Life Sciences.

[245]  M. Kirschner,et al.  Cytoskeletal dynamics and nerve growth , 1988, Neuron.

[246]  D. Niessing,et al.  Helical Growth of the Arabidopsis Mutant tortifolia2 Does Not Depend on Cell Division Patterns but Involves Handed Twisting of Isolated Cells[W][OA] , 2009, The Plant Cell Online.

[247]  Kathleen E. Rankin,et al.  Long astral microtubules uncouple mitotic spindles from the cytokinetic furrow , 2010, The Journal of cell biology.

[248]  Y. Bellaïche,et al.  Making the most of the midbody remnant: specification of the dorsal-ventral axis. , 2014, Developmental cell.

[249]  Y. Sakumura,et al.  Systems biology of symmetry breaking during neuronal polarity formation , 2011, Developmental neurobiology.

[250]  F. Bradke,et al.  Microtubule stabilization specifies initial neuronal polarization , 2008, The Journal of cell biology.

[251]  Oliver Brüstle,et al.  Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies , 2013, Nature Reviews Molecular Cell Biology.

[252]  D. Needleman,et al.  Physical basis of spindle self-organization , 2014, Proceedings of the National Academy of Sciences.

[253]  Judith W. Lundelius,et al.  Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage , 1992 .

[254]  M. Meneghini,et al.  Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. , 1999, Genes & development.

[255]  J. Collignon,et al.  Relationship between asymmetric nodal expression and the direction of embryonic turning , 1996, Nature.

[256]  H. E. Crampton V.—Reversal of Cleavage in a Sinistral Gasteropod , 1894 .

[257]  R. Schnabel,et al.  A Posterior Centre Establishes and Maintains Polarity of the Caenorhabditis elegans Embryo by a Wnt-Dependent Relay Mechanism , 2006, PLoS biology.

[258]  C. Mello,et al.  SRC-1 and Wnt signaling act together to specify endoderm and to control cleavage orientation in early C. elegans embryos. , 2002, Developmental cell.

[259]  D. Blackmond,et al.  The origin of biological homochirality. , 2010, Cold Spring Harbor perspectives in biology.

[260]  S. Redner,et al.  Dynamics of an idealized model of microtubule growth and catastrophe. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[261]  J. Tabony,et al.  Spatial structures in microtubular solutions requiring a sustained energy source , 1990, Nature.

[262]  Hans Meinhardt,et al.  Models for the generation and interpretation of gradients. , 2009, Cold Spring Harbor perspectives in biology.

[263]  Bob Goldstein,et al.  The PAR proteins: fundamental players in animal cell polarization. , 2007, Developmental cell.

[264]  J. Tabony,et al.  Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations. , 2007, Biophysical chemistry.

[265]  Stéphanie Portet,et al.  Gravitational Symmetry Breaking Leads to a Polar Liquid Crystal Phase of Microtubules In Vitro , 2005, Journal of biological physics.

[266]  A. Kolomeisky,et al.  Random hydrolysis controls the dynamic instability of microtubules. , 2011, Biophysical journal.

[267]  Monika Ritsch-Marte,et al.  Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility , 2015, Cell.

[268]  Louise P. Cramer,et al.  Forming the cell rear first: breaking cell symmetry to trigger directed cell migration , 2010, Nature Cell Biology.

[269]  S. Grill,et al.  Active torque generation by the actomyosin cell cortex drives left–right symmetry breaking , 2014, eLife.

[270]  M. O’Bryan,et al.  Microtubules and spermatogenesis. , 2014, Seminars in cell & developmental biology.

[271]  David Strutt,et al.  Principles of planar polarity in animal development , 2011, Development.

[272]  A. Kikuchi,et al.  Wnt5a signaling promotes apical and basolateral polarization of single epithelial cells , 2013, Molecular biology of the cell.

[273]  A. E. Boycott,et al.  The Inheritance of Sinistrality in Limnaea peregra (Mollusca, Pulmonata) , 1931 .

[274]  K. Kemphues,et al.  PARsing Embryonic Polarity , 2000, Cell.

[275]  Dylan T Burnette,et al.  Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. , 2008, Developmental cell.

[276]  A. Ephrussi,et al.  A Cdc42-regulated actin cytoskeleton mediates Drosophila oocyte polarization , 2013, Development.

[277]  E. Betzig,et al.  A Localized Wnt Signal Orients Asymmetric Stem Cell Division in Vitro , 2013, Science.

[278]  I. Sase,et al.  Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[279]  Edwin Munro,et al.  A self-organized biomechanical network drives shape changes during tissue morphogenesis , 2015, Nature.

[280]  B. Afzelius A human syndrome caused by immotile cilia. , 1976, Science.

[281]  A. Wynshaw-Boris,et al.  Planar polarization of node cells determines the rotational axis of node cilia , 2010, Nature Cell Biology.

[282]  C. A. Johnston,et al.  Molecular pathways regulating mitotic spindle orientation in animal cells , 2013, Development.

[283]  Frank Bradke,et al.  Neuronal polarization and the cytoskeleton. , 2011, Seminars in cell & developmental biology.

[284]  Steven N. Hird,et al.  Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans , 1993, The Journal of cell biology.

[285]  K. Kassner,et al.  Nonlinear study of symmetry breaking in actin gels: implications for cellular motility. , 2007, Physical review letters.

[286]  J. Priess,et al.  Cell polarity and gastrulation in C. elegans. , 2002, Development.

[287]  Tom Shemesh,et al.  Cellular chirality arising from the self-organization of the actin cytoskeleton , 2015, Nature Cell Biology.

[288]  T. Lubensky,et al.  Crosslinked actin networks show liquid crystal elastomer behaviour, including soft-mode elasticity , 2007 .

[289]  K. Keren,et al.  Symmetry breaking in reconstituted actin cortices , 2014, eLife.

[290]  N. Patel,et al.  Nodal signaling is involved in left-right asymmetry in snails , 2008, Nature.

[291]  W. Saxton,et al.  Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes , 2005, Development.

[292]  Gary G. Borisy,et al.  Self-polarization and directional motility of cytoplasm , 1999, Current Biology.

[293]  B. Goldstein,et al.  Wnt signals can function as positional cues in establishing cell polarity. , 2006, Developmental cell.

[294]  N. Hirokawa,et al.  Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein , 1999, Cell.

[295]  S. Lepage,et al.  Zebrafish epiboly: mechanics and mechanisms. , 2010, The International journal of developmental biology.

[296]  Guixue Wang,et al.  Rear actomyosin contractility-driven directional cell migration in three-dimensional matrices: a mechano-chemical coupling mechanism , 2014, Journal of The Royal Society Interface.

[297]  D. Kiehart,et al.  Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. , 1993, Genes & development.

[298]  P. Schwille,et al.  The Design of MACs (Minimal Actin Cortices) , 2013, Cytoskeleton.

[299]  Zhirong Bao,et al.  Chiral forces organize left-right patterning in C. elegans by uncoupling midline and anteroposterior axis. , 2010, Developmental cell.

[300]  B Hess,et al.  Spatial patterns from oscillating microtubules. , 1989, Science.

[301]  Wolfgang Losert,et al.  Geometry-Driven Polarity in Motile Amoeboid Cells , 2014, PloS one.

[302]  E. Paluch,et al.  Dynamic modes of the cortical actomyosin gel during cell locomotion and division. , 2006, Trends in cell biology.

[303]  Thomas Schmidt,et al.  Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling , 2004, The Journal of cell biology.