Perspectives on molecular modeling of supercritical fluids: From equations of state to molecular simulations. Recent advances, remaining challenges and opportunities

Abstract Knowing the behavior of fluids in the near critical region is a problem of scientific relevance and practical implications. However, some of the unique phenomena happening in this region can only be captured with theoretical methods if the fluctuations in the density and composition, as one approaches the critical point, are explicitly considered. This article provides an overview of the field of molecular modeling and supercritical fluids focused on recent applications of molecular-based equations of state and molecular simulations explicitly taking into account the singular behavior in the near critical region. Remaining challenges and opportunities in this field are also addressed here. As molecular-based equations of state become more precise and global, and force fields and molecular simulation are more affordable, it is expected that these modeling tools become routinely used for process design, as a bridge linking fundamental knowledge and practical applications.

[1]  Liming W. Salvino,et al.  Calculation of density fluctuation contributions to thermodynamic properties of simple fluids , 1992 .

[2]  J. D. van der Waals,et al.  Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung , 1894 .

[3]  Walter G. Chapman,et al.  Renormalization-Group Corrections to a Perturbed-Chain Statistical Associating Fluid Theory for Pure Fluids Near to and Far from the Critical Region , 2008 .

[4]  Ioannis Skarmoutsos,et al.  Local density augmentation and dynamic properties of hydrogen-and non-hydrogen-bonded supercritical fluids: a molecular dynamics study. , 2007, The Journal of chemical physics.

[5]  S. Enders,et al.  Calculation of surface properties of pure fluids using density gradient theory and SAFT-EOS , 2000 .

[6]  H. T. Davis,et al.  Free-energy theory of inhomogeneous fluids , 1979 .

[7]  J. A. White,et al.  Lennard-Jones as a model for argon and test of extended renormalization group calculations , 1999 .

[8]  Ranjit Biswas,et al.  Intermolecular Interactions and Local Density Augmentation in Supercritical Solvation: A Survey of Simulation and Experimental Results , 2000 .

[9]  Susi Lehtola,et al.  Microscopic structure of water at elevated pressures and temperatures , 2013, Proceedings of the National Academy of Sciences.

[10]  Andrés Mejía,et al.  Perfect wetting along a three-phase line: theory and molecular dynamics simulations. , 2006, The Journal of chemical physics.

[11]  Erdogan Kiran,et al.  Polymer miscibility, phase separation, morphological modifications and polymorphic transformations in dense fluids , 2009 .

[12]  D. Frenkel,et al.  Enhancement of protein crystal nucleation by critical density fluctuations. , 1997, Science.

[13]  Lourdes F. Vega,et al.  Alkylsilane-Functionalized Microporous and Mesoporous Materials: Molecular Simulation and Experimental Analysis of Gas Adsorption , 2012 .

[14]  M. J. Cocero,et al.  Micronization processes with supercritical fluids: fundamentals and mechanisms. , 2008, Advanced drug delivery reviews.

[15]  Lourdes F. Vega,et al.  Sorption of tryalkoxysilane in low-cost porous silicates using a supercritical CO2 method , 2012 .

[16]  Jianwen Jiang,et al.  Phase equilibria for chain‐fluid mixtures near to and far from the critical region , 2000 .

[17]  Joseph G. Shanks,et al.  Experimental Critical-Exponent Values for Fluids , 2009 .

[18]  Susan C. Tucker,et al.  Solvent Density Inhomogeneities in Supercritical Fluids. , 1999, Chemical reviews.

[19]  William Y. Svrcek,et al.  Viscosity : a critical review of practical predictive and correlative methods , 1995 .

[20]  Fèlix Llovell,et al.  Thermodynamic properties of Lennard-Jones chain molecules: renormalization-group corrections to a modified statistical associating fluid theory. , 2004, The Journal of chemical physics.

[21]  Lourdes F. Vega,et al.  Understanding the Performance of New Amine-Functionalized Mesoporous Silica Materials for CO2 Adsorption , 2014 .

[22]  Sheng Zhang,et al.  Renormalization group theory for fluids , 1993 .

[23]  Haibo Ma,et al.  Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: a molecular dynamics study. , 2011, The Journal of chemical physics.

[24]  Lourdes F. Vega,et al.  Phase equilibria, critical behavior and derivative properties of selected n-alkane/n-alkane and n-alkane/1-alkanol mixtures by the crossover soft-SAFT equation of state , 2007 .

[25]  F. Llovell,et al.  Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons. , 2013, The journal of physical chemistry. B.

[26]  J. Gross,et al.  Thermal Conductivity of Real Substances from Excess Entropy Scaling Using PCP-SAFT , 2017 .

[27]  Buxing Han,et al.  Supercritical fluids: Clean solvents for green chemistry , 2010 .

[28]  Amparo Galindo,et al.  Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR). , 2011, The Journal of chemical physics.

[29]  Pablo G. Debenedetti,et al.  Clustering in Dilute Binary Supercritical Mixtures : a Fluctuation Analysis , 1987 .

[30]  Antonio Tabernero,et al.  Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling , 2012 .

[31]  Peter Licence,et al.  Supercritical fluids: green solvents for green chemistry? , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Daniel Duque,et al.  Phase and interface behaviors in type-I and type-V Lennard-Jones mixtures: theory and simulations. , 2005, The Journal of chemical physics.

[33]  Jefferson W. Tester,et al.  Heat capacities of supercritical fluid mixtures: Comparing experimental measurements with Monte Carlo molecular simulations for carbon dioxide-methanol mixtures , 2017 .

[34]  F. Llovell,et al.  Phase equilibria, surface tensions and heat capacities of hydrofluorocarbons and their mixtures including the critical region , 2010 .

[35]  Cyrus Ghotbi,et al.  Solvation free energy and solubility of acetaminophen and ibuprofen in supercritical carbon dioxide: Impact of the solvent model , 2016 .

[36]  Edward J. Maginn,et al.  Force field comparison and thermodynamic property calculation of supercritical CO2 and CH4 using molecular dynamics simulations , 2014 .

[37]  A. Allal,et al.  Free-volume viscosity model for fluids in the dense and gaseous states. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Philippe Ungerer,et al.  Prediction of thermodynamic derivative properties of fluids by Monte Carlo simulation , 2001 .

[39]  H. Segura,et al.  An accurate direct technique for parametrizing cubic equations of state: Part III. Application of a crossover treatment , 2008 .

[40]  Lourdes F. Vega,et al.  Incorporating critical divergence of isochoric heat capacity into the soft‐SAFT equation of state , 2015 .

[41]  Isaac C. Sanchez,et al.  Interfacial tension theory of low and high molecular weight liquid mixtures , 1981 .

[42]  H. Weingärtner,et al.  Supercritical water as a solvent. , 2005, Angewandte Chemie.

[43]  Andrea Kruse,et al.  Hot compressed water as reaction medium and reactant properties and synthesis reactions , 2007 .

[44]  John P. Brodholt,et al.  Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions , 1998 .

[45]  J. A. White,et al.  Contribution of fluctuations to thermal properties of fluids with attractive forces of limited range: theory compared with PϱT and Cv data for argon , 1992 .

[46]  Sheng Zhang,et al.  Renormalization theory of nonuniversal thermal properties of fluids , 1995 .

[47]  A. Allal,et al.  A New Free Volume Model for Dynamic Viscosity and Density of Dense Fluids Versus Pressure and Temperature , 2001 .

[48]  Lourdes F. Vega,et al.  Vapor−Liquid Equilibria and Critical Behavior of Heavy n-Alkanes Using Transferable Parameters from the Soft-SAFT Equation of State , 2001 .

[49]  L. T. Novak,et al.  Fluid Viscosity-Residual Entropy Correlation , 2011 .

[50]  L. Vega,et al.  Effect of immobilized amines on the sorption properties of solid materials: impregnation versus grafting. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[51]  H. Ted Davis,et al.  Modified Van der Waals theory of fluid interfaces , 1975 .

[52]  Joachim Gross,et al.  Group Contribution Method for Viscosities Based on Entropy Scaling Using the Perturbed-Chain Polar Statistical Associating Fluid Theory , 2015 .

[53]  M. Maroncelli,et al.  Local density augmentation in neat supercritical fluids: the role of electrostatic interactions , 2003 .

[54]  G. Bondarenko,et al.  The physical state of supercritical fluids , 1998 .

[55]  John M. Stubbs Molecular simulations of supercritical fluid systems , 2016 .

[56]  Cyril Aymonier,et al.  Design of functional nanostructured materials using supercritical fluids , 2009 .

[57]  S. B. Kiselev,et al.  Crossover SAFT Equation of State: Application for Normal Alkanes , 1999 .

[58]  Y. Rosenfeld,et al.  Relation between the transport coefficients and the internal entropy of simple systems , 1977 .

[59]  Lourdes F. Vega,et al.  Simultaneous prediction of interfacial tension and phase equilibria in binary mixtures: An approach based on cubic equations of state with improved mixing rules , 2005 .

[60]  Alan K. Soper,et al.  Bridge over troubled water: the apparent discrepancy between simulated and experimental non-ambient water structure , 1996 .

[61]  Daniel Duque,et al.  Interfacial properties of Lennard-Jones chains by direct simulation and density gradient theory. , 2004, The Journal of chemical physics.

[62]  Clare McCabe,et al.  Application of Crossover Theory to the SAFT-VR Equation of State: SAFT-VRX for Pure Fluids , 2004 .

[63]  Lourdes F. Vega,et al.  Understanding CO2 Capture in Amine-Functionalized MCM-41 by Molecular Simulation , 2012 .

[64]  Lourdes F. Vega,et al.  THERMODYNAMIC BEHAVIOUR OF HOMONUCLEAR AND HETERONUCLEAR LENNARD-JONES CHAINS WITH ASSOCIATION SITES FROM SIMULATION AND THEORY , 1997 .

[65]  Lourdes F. Vega,et al.  Water + 1-alkanol systems: Modeling the phase, interface and viscosity properties , 2013 .

[66]  Lourdes F. Vega,et al.  Transport properties of HFC and HFO based refrigerants using an excess entropy scaling approach , 2018 .

[67]  Lourdes F. Vega,et al.  Analysis of CO2 Adsorption in Amine-Functionalized Porous Silicas by Molecular Simulations , 2015 .

[68]  Elvira Guàrdia,et al.  Local structural fluctuations, hydrogen bonding and structural transitions in supercritical water , 2017 .

[69]  Min Young Ha,et al.  Monte Carlo simulations on the local density inhomogeneities of sub- and supercritical carbon dioxide: Statistical analysis based on the Voronoi tessellation , 2017 .

[70]  Concepción Domingo,et al.  Preparation and Characterization of Surface Silanized TiO2 Nanoparticles under Compressed CO2: Reaction Kinetics , 2009 .

[71]  Josep Pàmies Corominas,et al.  Bulk and interfacial properties of chain fluids: a molecular modelling approach , 2003 .

[72]  Naoko Akiya,et al.  Roles of water for chemical reactions in high-temperature water. , 2002, Chemical reviews.

[73]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[74]  S. B. Kiselev,et al.  Cubic crossover equation of state , 1998 .

[75]  Barbara L. Knutson,et al.  Supercritical fluids as solvents for chemical and materials processing , 1996, Nature.

[76]  Malte Henkel,et al.  Critical phenomena: 150 years since Cagniard de la Tour , 2009 .

[77]  Mark A. McHugh,et al.  Viscosity Models Based on the Free Volume and Frictional Theories for Systems at Pressures to 276 MPa and Temperatures to 533 K , 2012 .

[78]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[79]  Gerd Brunner,et al.  The 20th anniversary of the Journal of Supercritical Fluids-A special issue on future directions in supercritical fluid science and technology , 2009 .

[80]  J. Prausnitz,et al.  Thermodynamics for fluid mixtures near to and far from the vapor–liquid critical point , 2004 .

[81]  Peter T. Cummings,et al.  Molecular simulation study of solvation structure in supercritical aqueous solutions , 1994 .

[82]  Min Young Ha,et al.  Molecular Dynamics simulation on the local density distribution and solvation structure of supercritical CO 2 around Naphthalene , 2017 .

[83]  Lourdes F. Vega,et al.  Direct calculation of interfacial properties of fluids close to the critical region by a molecular-b , 2011 .

[84]  Ž. Knez,et al.  Industrial applications of supercritical fluids: A review , 2014 .

[85]  Andrés Mejía,et al.  Force Fields for Coarse-Grained Molecular Simulations from a Corresponding States Correlation , 2014 .

[86]  Tapio Westerlund,et al.  Waste to energy by industrially integrated supercritical water gasification – Effects of alkali salts in residual by-products from the pulp and paper industry , 2011 .

[87]  Fèlix Llovell,et al.  Global fluid phase equilibria and critical phenomena of selected mixtures using the crossover soft-SAFT equation. , 2006, The journal of physical chemistry. B.

[88]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[89]  L. E. Scriven,et al.  Molecular theory of fluid interfaces , 1976 .

[90]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[91]  Nicola Elvassore,et al.  A comparison between semi-empirical and molecular-based equations of state for describing the thermodynamic of supercritical micronization processes , 2006 .

[92]  Katsumi Kaneko,et al.  Chapter 2.10 Micropore filling mechanism in inorganic sorbents , 1996 .

[93]  Lourdes F. Vega,et al.  A new method using compressed CO2 for the in situ functionalization of mesoporous silica with hyperbranched polymers. , 2013, Chemical communications.

[94]  Phillip E. Savage,et al.  A perspective on catalysis in sub- and supercritical water , 2009 .

[95]  Lourdes F. Vega,et al.  Accurate viscosity predictions of linear polymers from n-alkanes data , 2017 .

[96]  Yiping Tang,et al.  OUTSIDE AND INSIDE THE CRITICAL REGION OF THE LENNARD-JONES FLUID , 1998 .

[97]  Kurt Binder,et al.  Finite size effects for the simulation of phase coexistence in the Gibbs ensemble near the critical point , 1992 .

[98]  J. H. Gibbs,et al.  A molecular theory of interfacial phenomena in multicomponent systems , 1976 .

[99]  Lourdes F. Vega,et al.  Accurate modeling of supercritical CO2 for sustainable processes: Water + CO2 and CO2 + fatty acid esters mixtures , 2015 .

[100]  K. Gubbins,et al.  Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations , 2003 .

[101]  F. Llovell,et al.  Free-volume theory coupled with soft-SAFT for viscosity calculations: comparison with molecular simulation and experimental data. , 2013, The journal of physical chemistry. B.

[102]  T. Ghosh,et al.  Viscosity of Liquids: Theory, Estimation, Experiment, and Data , 2006 .

[103]  Leo Lue,et al.  Renormalization-group corrections to an approximate free-energy model for simple fluids near to and far from the critical region , 1998 .

[104]  Leo Lue,et al.  Thermodynamics of fluid mixtures near to and far from the critical region , 1998 .

[105]  S. Enders,et al.  Interfacial properties of binary mixtures , 2002 .

[106]  Lourdes F. Vega,et al.  Regenerable solid CO2 sorbents prepared by supercritical grafting of aminoalkoxysilane into low-cost mesoporous silica , 2014 .

[107]  Thomas Kraska,et al.  Molecular dynamics simulation of the formation of pharmaceutical particles by rapid expansion of a supercritical solution , 2010 .

[108]  Edward J. Maginn,et al.  Use of molecular dynamics simulations to estimate the solubility of menadione in supercritical CO2 using Chrastil's model , 2017 .

[109]  André Bardow,et al.  Improved Property Predictions by Combination of Predictive Models , 2017 .

[110]  Takeshi Morita,et al.  Inhomogeneity of molecular distribution in supercritical fluids , 2000 .

[111]  Jianwen Jiang,et al.  Equation of state for thermodynamic properties of chain fluids near-to and far-from the vapor–liquid critical region , 1999 .

[112]  Erling Halfdan Stenby,et al.  The friction theory (f-theory) for viscosity modeling , 2000 .

[113]  Fèlix Llovell,et al.  Prediction of thermodynamic derivative properties of pure fluids through the Soft-SAFT equation of state. , 2006, The journal of physical chemistry. B.

[114]  K. Wilson Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior , 1971 .

[115]  Lourdes F. Vega,et al.  Assessing Ionic Liquids Experimental Data Using Molecular Modeling: [Cnmim][BF4] Case Study , 2014 .

[116]  J. H. Gibbs,et al.  Molecular theory of surface tension , 1975 .

[117]  Aurelio Olivet,et al.  Sulfur hexafluoride's liquid-vapor coexistence curve, interfacial properties, and diffusion coefficients as predicted by a simple rigid model. , 2005, The Journal of chemical physics.

[118]  Yang Guo,et al.  Review of catalytic supercritical water gasification for hydrogen production from biomass , 2010 .

[119]  Thierry Tassaing,et al.  The local structure of sub- and supercritical water as studied by FTIR spectroscopy and molecular dynamics simulations , 2017 .

[120]  Ram B. Gupta,et al.  The structural features of liquid and supercritical water , 1998 .

[121]  Raquel Viveiros,et al.  Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: Rational design using computational approach , 2017 .

[122]  C. Domingo,et al.  Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process. , 2009, Acta biomaterialia.

[123]  Charusita Chakravarty,et al.  Excess entropy scaling of transport properties of Lennard-Jones chains. , 2008, The Journal of chemical physics.