The use of animal models for stroke research: a review.

Stroke has been identified as the second leading cause of death worldwide. Stroke is a focal neurologic deficit caused by a change in cerebral circulation. The use of animal models in recent years has improved our understanding of the physiopathology of this disease. Rats and mice are the most commonly used stroke models, but the demand for larger models, such as rabbits and even nonhuman primates, is increasing so as to better understand the disease and its treatment. Although the basic mechanisms of stroke are nearly identical among mammals, we here discuss the differences between the human encephalon and various animals. In addition, we compare common surgical techniques used to induce animal models of stroke. A more complete anatomic knowledge of the cerebral vessels of various model species is needed to develop more reliable models for objective results that improve knowledge of the pathology of stroke in both human and veterinary medicine.

[1]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[2]  Afsane Riazi,et al.  Self-efficacy and self-management after stroke: a systematic review , 2011, Disability and rehabilitation.

[3]  O. Corleta,et al.  Transient middle cerebral artery occlusion in rats as an experimental model of brain ischemia. , 2010, Acta cirurgica brasileira.

[4]  I. Prada,et al.  Sistematização da origem, da distribuição e dos territórios da artéria cerebral caudal na superfície do encéfalo em gatos , 2010 .

[5]  R. Skinner,et al.  Stroke location and brain function in an embolic rabbit stroke model. , 2010, Journal of vascular and interventional radiology : JVIR.

[6]  P. Lapchak Translational Stroke Research Using a Rabbit Embolic Stroke Model: A Correlative Analysis Hypothesis for Novel Therapy Development , 2010, Translational Stroke Research.

[7]  A. Schedl,et al.  Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. , 2010, The Journal of clinical investigation.

[8]  A. M. Arthur,et al.  Efeito da Estimulação Elétrica sobre a Plasticidade Neural: Um Estudo em Pacientes com Défict Sensorial Decorrente de Acidente Vascular Encefálico , 2009 .

[9]  M. T. Barbosa,et al.  [Stroke prevalence among the elderly in Vassouras, Rio de Janeiro State, Brazil, according to data from the Family Health Program]. , 2009, Cadernos de saude publica.

[10]  L. Garosi,et al.  Ischaemic and haemorrhagic stroke in the dog. , 2009, Veterinary journal.

[11]  C. Sudlow,et al.  Potential Animal Models of Lacunar Stroke: A Systematic Review , 2009, Stroke.

[12]  P. Pimentel-Coelho,et al.  Terapia celular no acidente vascular cerebral , 2009 .

[13]  Marcelo Ananias Teocchi Modelos animais no estudo de AVC , 2009 .

[14]  Yanlin Wang-Fischer,et al.  Manual of Stroke Models in Rats , 2008 .

[15]  J. R. Ferreira,et al.  Estudo anatômico da origem e distribuição dos ramos corticais das artérias cerebrais caudais do encéfalo do macaco prego ( Cebus apella L., 1766) , 2008 .

[16]  J. R. Ferreira,et al.  Nomenclatura proposta para denominar as artérias da base do encéfalo do macaco-prego ( Cebus apella L., 1766) , 2008 .

[17]  Fatores de risco para o acidente vascular encefálico - doi: 10.5102/ucs.v3i1.551 , 2008 .

[18]  A. Caplan Adult mesenchymal stem cells for tissue engineering versus regenerative medicine , 2007, Journal of cellular physiology.

[19]  W. Dalton Dietrich,et al.  Characterization of a thromboembolic photochemical model of repeated stroke in mice , 2007, Journal of Neuroscience Methods.

[20]  Raphael Guzman,et al.  Cell Transplantation Therapy for Stroke , 2007, Stroke.

[21]  J. Rossmeisl,et al.  Presumed and confirmed striatocapsular brain infarctions in six dogs. , 2007, Veterinary ophthalmology.

[22]  I. Whishaw,et al.  Subcortical middle cerebral artery ischemia abolishes the digit flexion and closing used for grasping in rat skilled reaching , 2006, Neuroscience.

[23]  Jussara Rocha Ferreira,et al.  O SISTEMA CARÓTICO DO ENCÉFALO DE PRIMATA NEOTROPICAL, ANATOMIA DA ARTÉRIA INTER-HEMISFÉRICA (Cebus apella, Linnaeus, 1766) , 2006 .

[24]  W. Walz,et al.  Minocycline treatment prevents cavitation in rats after a cortical devascularizing lesion , 2006, Brain Research.

[25]  Ann M. Stowe,et al.  An animal model of capsular infarct: Endothelin-1 injections in the rat , 2006, Behavioural Brain Research.

[26]  I. Babichenko,et al.  Experimental model of hemorrhagic stroke: Rabbit immunization with HL-60 promyelocytic cell differentiation factor , 2006, Bulletin of Experimental Biology and Medicine.

[27]  Sônia Maria de Carvalho,et al.  Contribuição da imagem funcional por ressonância magnética para o estudo da reorganização do córtex motor pós-AVCI , 2006 .

[28]  G. S. Rodrigues,et al.  Estudo anatomico das arterias da base do encefalo em gatos (Felis catus domesticus) , 2006 .

[29]  L. Garosi,et al.  Ischaemic stroke in dogs and humans: a comparative review. , 2005, The Journal of small animal practice.

[30]  F. Yamamoto,et al.  [Neuroprotective agents in stroke: national opinion]. , 2005, Arquivos de neuro-psiquiatria.

[31]  V. Hachinski,et al.  Interaction Between a Rat Model of Cerebral Ischemia and &bgr;-Amyloid Toxicity: II. Effects of Triflusal , 2005, Stroke.

[32]  G. S. Rodrigues,et al.  Artérias da base do encéfalo em suínos da linhagem Camborough 22 , 2005 .

[33]  I. Prada,et al.  O circuito arterial da base do encéfalo em suínos (Sus scrofa domesticus Linnaeus, 1758), formação e comportamento , 2005 .

[34]  M. Ihara,et al.  White Matter Lesions and Glial Activation in a Novel Mouse Model of Chronic Cerebral Hypoperfusion , 2004, Stroke.

[35]  Elena Tremoli,et al.  Analysis of pathological events at the onset of brain damage in stroke‐prone rats: A proteomics and magnetic resonance imaging approach , 2004, Journal of neuroscience research.

[36]  M. Moskowitz,et al.  Mouse Model of Microembolic Stroke and Reperfusion , 2004, Stroke.

[37]  J. T. Walker,et al.  Experimental cerebral ischemia in Mongolian gerbils , 1976, Acta Neuropathologica.

[38]  J. T. Walker,et al.  Experimental cerebral ischemia in Mongolian gerbils , 1976, Acta Neuropathologica.

[39]  D. Fagundes,et al.  Modelo animal de doença: critérios de escolha e espécies de animais de uso corrente , 2004 .

[40]  V. Perry,et al.  Focal Lesions in the Rat Central Nervous System Induced by Endothelin‐1 , 2003, Journal of neuropathology and experimental neurology.

[41]  T. Jones,et al.  Long-Lasting Functional Disabilities in Middle-Aged Rats with Small Cerebral Infarcts , 2003, The Journal of Neuroscience.

[42]  W. Walz,et al.  Unusual topographical pattern of proximal astrogliosis around a cortical devascularizing lesion , 2003, Journal of neuroscience research.

[43]  A. Joutel,et al.  Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. , 2003, The American journal of pathology.

[44]  P. Doyle Measuring health outcomes in stroke survivors. , 2002, Archives of physical medicine and rehabilitation.

[45]  J. R. Ferreira,et al.  Estudo das artérias cerebelares do macaco-prego: considerações sobre a nomenclatura (Cebus apella, L.1766) , 2002 .

[46]  H. Shibasaki,et al.  White matter lesions and alteration of vascular cell composition in the brain of spontaneously hypertensive rats , 2001, Neuroreport.

[47]  Douglas C. Miller,et al.  A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation. , 2001, Journal of pharmacological and toxicological methods.

[48]  K. Todd,et al.  Patency of Cerebral Microvessels after Focal Embolic Stroke in the Rat , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[49]  S. Satoh,et al.  A New Model of Cerebral Microthrombosis in Rats and the Neuroprotective Effect of a Rho-Kinase Inhibitor , 2000, Stroke.

[50]  Fernando Villar Alterações Centrais e Periféricas Após Lesão do Sistema Nervoso Central. Considerações e Implicações para a Prática da Fisioterapia , 1998 .

[51]  B. Rollin,et al.  Care, husbandry, and well-being : an overview by species , 1995 .

[52]  D. Gallacher,et al.  Anatomic Variation of the Middle Cerebral Artery in the Sprague‐Dawley Rat , 1993, Stroke.

[53]  L. Horrocks,et al.  Ischemia and hypoxia , 1989 .

[54]  P. Molinoff,et al.  Basic Neurochemistry: Molecular, Cellular and Medical Aspects , 1989 .

[55]  G. Molinari Why model strokes? , 1988, Stroke.

[56]  S. Levine,et al.  Cerebral ischemia in infant and adult gerbils. Relation to incomplete circle of Willis. , 1969, Archives of pathology.

[57]  S. Levine,et al.  Effects of ischemia and other procedures on the brain and retina of the gerbil (Meriones unguiculatus). , 1966, Experimental neurology.

[58]  L ROGERS,et al.  The function of the circulus arteriosus of Willis. , 1947, Brain : a journal of neurology.

[59]  Bertha de Vriese Sur la signification morphologique des artères cérébrales , 1905 .