Optical quantitative phase microscopy: novel methods and applications

Quantitative Phase Imaging (QPI) techniques are a set of microscopy techniques that allow us to observe transparent samples, such as biological cells and optical components, in a way that standard optical microscopes cannot. Although these samples do not absorb light they do cause a significant change to the phase of the incident light. QPI techniques map these optical path length variations across a transparent sample to produce high contrast phase images. Additionally, the quantitative nature of the phase images allows for further information, such as sample thickness and refractive index, to be deduced. The purpose of this thesis is to develop and test novel QPI methods and applications based on a diffractive imaging technique called ptychography. The thesis starts with an overview of key QPI techniques before showing the development and testing of a novel QPI technique called optical near-field ptychography. The phase image produced is shown to be accurate and artefact free, while reducing the quantity of data needed for image acquisition, when compared to existing techniques. It is identified that Spatial Light Modulators (SLMs), digital optical devices that modulate a light wavefront’s phase or amplitude across a two-dimensional surface, are increasingly important as components in QPI techniques. To utilise an SLM effectively it is necessary to characterise the modulation response of the device. A novel application of ptychography in characterising an SLM is demonstrated, generating a subpixel resolution of the display over the device’s entire active area. Further developments are then explored in the integration of an SLM with ptychography, with the ultimate aim of developing a new QPI technique with no moving parts. The application of this technology is envisioned in high quality quantitative phase videos.

[1]  George O. Reynolds,et al.  The New Physical Optics Notebook , 1989 .

[2]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[3]  James R. Fienup,et al.  Image reconstruction by phase retrieval with transverse translation diversity , 2008, Optical Engineering + Applications.

[4]  Dayong Wang,et al.  Study of the modulation characterization of phase-only liquid crystal spatial light modulator by digital holography , 2012, Other Conferences.

[5]  W. Hoppe,et al.  Beugung im inhomogenen Primärstrahlwellenfeld. III. Amplituden- und Phasenbestimmung bei unperiodischen Objekten , 1969 .

[6]  H H Arsenault,et al.  Phase calibration and applications of a liquid-crystal spatial light modulator. , 1995, Applied optics.

[7]  J. Rodenburg Ptychography and Related Diffractive Imaging Methods , 2008 .

[8]  Bin Wang,et al.  Finite-difference time-domain simulation of a liquid-crystal optical phased array. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  V. Bove,et al.  Anisotropic leaky-mode modulator for holographic video displays , 2013, Nature.

[10]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[11]  Tan H. Nguyen,et al.  Gradient light interference microscopy for 3D imaging of unlabeled specimens , 2017, Nature Communications.

[12]  J. García‐Márquez,et al.  Flicker minimization in an LCoS Spatial Light Modulator. , 2012, Optics express.

[13]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[14]  Veit Elser,et al.  Divide and concur: a general approach to constraint satisfaction. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Automotive head‐up display using liquid‐crystal‐on‐silicon displays , 1997 .

[16]  John M. Rodenburg,et al.  A new method of high resolution, quantitative phase scanning microscopy , 2010, Scanning Microscopies.

[17]  J. Rodenburg,et al.  Extended ptychography in the transmission electron microscope: possibilities and limitations. , 2011, Ultramicroscopy.

[18]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[19]  E. Leith,et al.  Reconstructed Wavefronts and Communication Theory , 1962 .

[20]  Timothy D. Wilkinson,et al.  Telecommunications Applications of LCOS Devices , 2002 .

[21]  B. Wattellier,et al.  Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. , 2009, Optics express.

[22]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[23]  David George Voelz,et al.  Computational Fourier Optics: A MATLAB Tutorial , 2011 .

[24]  W. Hoppe Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen , 1969 .

[25]  Zhuo Wang,et al.  Optical measurement of cycle-dependent cell growth , 2011, Proceedings of the National Academy of Sciences.

[26]  Andreas Fehringer,et al.  X-ray nanotomography using near-field ptychography. , 2015, Optics express.

[27]  Laura Waller,et al.  Standardizing the resolution claims for coherent microscopy , 2016, Nature Photonics.

[28]  K. Nugent,et al.  Phase retrieval from images in the presence of first-order vortices. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Yunpeng Feng,et al.  Characterization of Spatial Light Modulator Based on the Phase in Fourier Domain of the Hologram and Its Applications in Coherent Imaging , 2018 .

[30]  O. Bunk,et al.  Influence of the overlap parameter on the convergence of the ptychographical iterative engine. , 2008, Ultramicroscopy.

[31]  J. Rodenburg,et al.  A phase retrieval algorithm for shifting illumination , 2004 .

[32]  Gabriel Popescu,et al.  Quantitative Phase Imaging , 2012 .

[33]  W. Osten,et al.  Characterization of a spatial light modulator and its application in phase retrieval. , 2009, Applied optics.

[34]  Gabriel Popescu,et al.  Quantitative phase imaging of live cells using fast Fourier phase microscopy. , 2007, Applied optics.

[35]  Yongkeun Park,et al.  Methods in quantitative phase imaging in life science. , 2018, Methods.

[36]  Peng Li,et al.  Breaking ambiguities in mixed state ptychography. , 2016, Optics express.

[37]  Gabriel Popescu,et al.  Prediction of Prostate Cancer Recurrence Using Quantitative Phase Imaging , 2015, Scientific Reports.

[38]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[39]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[40]  Zhuo Wang,et al.  Label-free intracellular transport measured by spatial light interference microscopy. , 2011, Journal of biomedical optics.

[41]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[42]  A. Yacoot,et al.  Phase calibration target for quantitative phase imaging with ptychography. , 2016, Optics express.

[43]  Satoru Toyooka,et al.  Phase shifting common path interferometer using a liquid-crystal phase modulator , 1994 .

[44]  Gabriel Popescu,et al.  Highly Sensitive Quantitative Imaging for Monitoring Single Cancer Cell Growth Kinetics and Drug Response , 2014, PloS one.

[45]  Markus E. Testorf,et al.  Implementation of Fourier array illuminators using pixelated SLM: efficiency limitations , 1999 .

[46]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[47]  Alexander Jesacher,et al.  Three dimensional laser microfabrication in diamond using a dual adaptive optics system. , 2011, Optics express.

[48]  J. Mertz Introduction to Optical Microscopy , 2009 .

[49]  Claudio Iemmi,et al.  Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display , 2008 .

[50]  Petra Schwille,et al.  Trends in fluorescence imaging and related techniques to unravel biological information , 2007, HFSP journal.

[51]  Optical ptychography with extended depth of field , 2017 .

[52]  Gabriel Popescu,et al.  New technologies for measuring single cell mass. , 2014, Lab on a chip.

[53]  Tim Salditt,et al.  Near-field ptychography using lateral and longitudinal shifts , 2015 .

[54]  Guoan Zheng,et al.  Quantitative phase imaging via Fourier ptychographic microscopy. , 2013, Optics letters.

[55]  A H Greenaway,et al.  Shaping ultrafast laser inscribed optical waveguides using a deformable mirror. , 2008, Optics express.

[56]  K. Creath V Phase-Measurement Interferometry Techniques , 1988 .

[57]  Gabriel Popescu,et al.  Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology , 2014, IEEE Photonics Journal.

[58]  Christoph Rau,et al.  Multiscale X-ray imaging using ptychography , 2018, Journal of synchrotron radiation.

[59]  S. Bigo,et al.  Mode-Division Multiplexing of 2 $\,\times\,$100 Gb/s Channels Using an LCOS-Based Spatial Modulator , 2012, Journal of Lightwave Technology.

[60]  M. Mir,et al.  Blood testing at the single cell level using quantitative phase and amplitude microscopy , 2011, Biomedical optics express.

[61]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[62]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[63]  Franz Pfeiffer,et al.  X-ray near-field ptychography for optically thick specimens , 2015 .

[64]  K. Nakamura,et al.  Magneto-optic spatial light modulator with submicron-size magnetic pixels for wide-viewing-angle holographic displays. , 2014, Optics letters.

[65]  D. Gabor A New Microscopic Principle , 1948, Nature.

[66]  Franz Pfeiffer,et al.  Characterization of near-field ptychography. , 2015, Optics express.

[67]  R. Horstmeyer,et al.  Wide-field, high-resolution Fourier ptychographic microscopy , 2013, Nature Photonics.

[68]  Zhuo Wang,et al.  Tissue refractive index as marker of disease. , 2011, Journal of biomedical optics.

[69]  Eric Pop,et al.  Topography and refractometry of nanostructures using spatial light interference microscopy. , 2010, Optics letters.

[70]  J. Marrison,et al.  Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information , 2013, Scientific Reports.

[71]  Guoan Zheng,et al.  Fourier Ptychographic Imaging: A Matlab Tutorial , 2016 .

[72]  Hidenobu Arimoto,et al.  Adaptive Optics with a Liquid-Crystal-on-Silicon Spatial Light Modulator and Its Behavior in Retinal Imaging , 2009 .

[73]  Tim N. Ford,et al.  Quantitative phase imaging using a partitioned detection aperture. , 2012, Optics letters.

[74]  Anand Asundi,et al.  Microlens characterization by digital holographic microscopy with physical spherical phase compensation. , 2010, Applied optics.

[75]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[76]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[77]  Jian Zhang,et al.  Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman–Green interferometer , 2007 .

[78]  K. Nugent,et al.  Noninterferometric phase imaging with partially coherent light , 1998 .

[79]  Gabriel Popescu,et al.  Fourier phase microscopy for investigation of biological structures and dynamics. , 2004, Optics letters.

[80]  Fucai Zhang,et al.  Quantitative phase contrast optimised cancerous cell differentiation via ptychography. , 2012, Optics express.

[81]  I. Bigio,et al.  Quantitative Biomedical Optics: Theory, Methods, and Applications , 2016 .

[82]  M. Teague Deterministic phase retrieval: a Green’s function solution , 1983 .

[83]  K. Nugent,et al.  Single Cell Volume Measurement by Quantitative Phase Microscopy (QPM): A Case Study of Erythrocyte Morphology , 2006, Cellular Physiology and Biochemistry.

[84]  Michal Makowski,et al.  Simple holographic projection in color. , 2012, Optics express.

[85]  Christian Depeursinge,et al.  Quantitative phase imaging in biomedicine , 2018, Nature Photonics.

[86]  Peter J O'Toole,et al.  Characterising live cell behaviour: Traditional label-free and quantitative phase imaging approaches. , 2017, The international journal of biochemistry & cell biology.

[87]  D. Aguirre-Aguirre,et al.  Obtaining the curve “Phase shift vs gray level” of a spatial light modulator Holoeye LC2012 , 2015 .

[88]  Gabriel Popescu,et al.  Real Time Blood Testing Using Quantitative Phase Imaging , 2013, PloS one.

[89]  M. Teitell,et al.  Live-cell mass profiling: an emerging approach in quantitative biophysics , 2014, Nature Methods.

[90]  A. Diaz,et al.  X-ray ptychography with extended depth of field. , 2016, Optics express.

[91]  J. Rodenburg,et al.  Optical ptychography: a practical implementation with useful resolution. , 2010, Optics letters.

[92]  Zhuo Wang,et al.  Spatial light interference tomography (SLIT) , 2011, Optics express.

[93]  Bahram Javidi,et al.  Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems , 2018 .

[94]  Malgorzata Kujawinska,et al.  Active, LCoS based laser interferometer for microelements studies. , 2006, Optics express.

[95]  Franz Pfeiffer,et al.  Near-field ptychography: phase retrieval for inline holography using a structured illumination , 2013, Scientific Reports.

[96]  Laura Waller,et al.  Computational illumination for high-speed in vitro Fourier ptychographic microscopy , 2015, 1506.04274.

[97]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[98]  F. Pfeiffer,et al.  Quantitative biological imaging by ptychographic x-ray diffraction microscopy , 2009, Proceedings of the National Academy of Sciences.

[99]  Z. You,et al.  Fundamentals of phase-only liquid crystal on silicon (LCOS) devices , 2014, Light: Science & Applications.

[100]  R. Barer Interference Microscopy and Mass Determination , 1952, Nature.

[101]  G. Popescu Quantitative Phase Imaging of Cells and Tissues , 2011 .

[102]  M. Kirschner,et al.  Size homeostasis in adherent cells studied by synthetic phase microscopy , 2013, Proceedings of the National Academy of Sciences.

[103]  Pierre Marquet,et al.  Dual-wavelength Digital Holography for quantification of cell volume and integral refractive index (RI) , 2011, European Conference on Biomedical Optics.

[104]  Richard Clare,et al.  Polychromatic near-field ptychography , 2016, 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ).

[105]  Shaowei Jiang,et al.  Near-field Fourier ptychography: super-resolution phase retrieval via speckle illumination. , 2019, Optics express.

[106]  L. Tian,et al.  3D intensity and phase imaging from light field measurements in an LED array microscope , 2015 .

[107]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[108]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[109]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[110]  Xiaojing Huang,et al.  Optimization of overlap uniformness for ptychography. , 2014, Optics express.

[111]  Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[112]  Samuel McDermott,et al.  Characterizing a spatial light modulator using ptychography. , 2017, Optics letters.

[113]  A. G. Cullis,et al.  Transmission microscopy without lenses for objects of unlimited size. , 2007, Ultramicroscopy.

[114]  J. Rodenburg,et al.  An annealing algorithm to correct positioning errors in ptychography. , 2012, Ultramicroscopy.

[115]  Gabriel Popescu,et al.  Label-Free Characterization of Emerging Human Neuronal Networks , 2014, Scientific Reports.

[116]  Chao Zuo,et al.  High-speed Fourier ptychographic microscopy based on programmable annular illuminations , 2018, Scientific Reports.

[117]  Hiroshi Yoshikawa,et al.  Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal , 2016 .

[118]  Sotiris Plainis,et al.  Power Profiles of Multifocal Contact Lenses and Their Interpretation , 2013, Optometry and vision science : official publication of the American Academy of Optometry.

[119]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[120]  K. Nugent,et al.  Quantitative optical phase microscopy. , 1998, Optics letters.

[121]  Han Yen Tu,et al.  Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode , 2013 .

[122]  Alexander Jesacher,et al.  Colour hologram projection with an SLM by exploiting its full phase modulation range. , 2014, Optics express.

[123]  Samuel McDermott,et al.  Near-field ptychographic microscope for quantitative phase imaging. , 2018, Optics express.

[124]  T. Kasama,et al.  Electron holography for the study of magnetic nanomaterials. , 2008, Accounts of chemical research.

[125]  Gabriel Popescu,et al.  Observation of dynamic subdomains in red blood cells. , 2006, Journal of biomedical optics.

[126]  Yingjie Yu,et al.  Dynamic holographic three-dimensional projection based on liquid crystal spatial light modulator and cylindrical fog screen , 2015 .