Routing of Electric Vehicles: Constrained Shortest Path Problems with Resource Recovering Nodes

We consider a constrained shortest path problem with the possibility to refill the resource at certain nodes. This problem is motivated by routing electric vehicles with a comparatively short cruising range due to the limited battery capacity. Thus, for longer distances the battery has to be recharged on the way. Furthermore, electric vehicles can recuperate energy during downhill drive. We extend the common constrained shortest path problem to arbitrary costs on edges and we allow regaining resources at the cost of higher travel time. We show that this yields not shortest paths but shortest walks that may contain an arbitrary number of cycles. We study the structure of optimal solutions and develop approximation algorithms for finding short walks under mild assumptions on charging functions. We also address a corresponding network flow problem that generalizes these walks.

[1]  Matthias Müller-Hannemann,et al.  The Price of Robustness in Timetable Information , 2011, ATMOS.

[2]  Daniela Rus,et al.  Practical Route Planning Under Delay Uncertainty: Stochastic Shortest Path Queries , 2012, Robotics: Science and Systems.

[3]  K. Teschke,et al.  Motivators and deterrents of bicycling: comparing influences on decisions to ride , 2011 .

[4]  Timo Berthold Heuristic algorithms in global MINLP solvers , 2014 .

[5]  Giuseppe F. Italiano,et al.  Is Timetabling Routing Always Reliable for Public Transport? , 2013, ATMOS.

[6]  Bruce L. Golden,et al.  A library of local search heuristics for the vehicle routing problem , 2010, Math. Program. Comput..

[7]  Uri Zwick,et al.  All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.

[8]  Tadao Takaoka,et al.  Combining All Pairs Shortest Paths and All Pairs Bottleneck Paths Problems , 2014, LATIN.

[9]  Jochen Könemann,et al.  Faster and simpler algorithms for multicommodity flow and other fractional packing problems , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[10]  Cynthia A. Phillips,et al.  The network inhibition problem , 1993, STOC.

[11]  Karsten Weihe,et al.  On the cardinality of the Pareto set in bicriteria shortest path problems , 2006, Ann. Oper. Res..

[12]  Keld Helsgaun,et al.  General k-opt submoves for the Lin–Kernighan TSP heuristic , 2009, Math. Program. Comput..

[13]  Thomas Schlechte,et al.  Railway Track Allocation: Models and Algorithms , 2012 .

[14]  Yann Disser,et al.  Multi-criteria Shortest Paths in Time-Dependent Train Networks , 2008, WEA.

[15]  Matthias Müller-Hannemann,et al.  Finding All Attractive Train Connections by Multi-criteria Pareto Search , 2004, ATMOS.

[16]  Gilbert Laporte,et al.  An Interactive Decision Support System For The Design Of Rapid Public Transit Networks , 2002 .

[17]  Tadao Takaoka,et al.  Subcubic Cost Algorithms for the All Pairs Shortest Path Problem , 1998, Algorithmica.

[18]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[19]  Matthias Müller-Hannemann,et al.  Recoverable Robust Timetable Information , 2013, ATMOS.

[20]  Y. Shiloach The two paths problem is polynomial , 1978 .

[21]  Stefan Funke,et al.  Enabling E-Mobility: Facility Location for Battery Loading Stations , 2013, AAAI.

[22]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[23]  Meghan Winters,et al.  Designing a route planner to facilitate and promote cycling in Metro Vancouver, Canada , 2010 .

[24]  Andrew V. Goldberg,et al.  Customizable Route Planning , 2011, SEA.

[25]  Lawrence Mandow,et al.  Multiobjective heuristic search in road maps , 2012, Expert Syst. Appl..

[26]  Qing Song,et al.  Exploring pareto routes in multi-criteria urban bicycle routing , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[27]  Mark Ziegelmann Constrained shortest paths and related problems , 2001 .

[28]  Richard A. Brualdi,et al.  The assignment polytope , 1976, Math. Program..

[29]  Ricardo García-Ródenas,et al.  Location of infrastructure in urban railway networks , 2009, Comput. Oper. Res..

[30]  Julian Dibbelt,et al.  Speed-Consumption Tradeoff for Electric Vehicle Route Planning , 2014, ATMOS.

[31]  R. Gomory,et al.  A Primal Method for the Assignment and Transportation Problems , 1964 .

[32]  Refael Hassin,et al.  Approximation Schemes for the Restricted Shortest Path Problem , 1992, Math. Oper. Res..

[33]  Tobias Achterberg,et al.  Constraint integer programming , 2007 .

[34]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[35]  Andrew V. Goldberg,et al.  Computing Point-to-Point Shortest Paths from External Memory , 2005, ALENEX/ANALCO.

[36]  Emmanuel Néron,et al.  Search for the best compromise solution on Multiobjective shortest path problem , 2010, Electron. Notes Discret. Math..

[37]  Gabriel Y. Handler,et al.  A dual algorithm for the constrained shortest path problem , 1980, Networks.

[38]  Paolo Toth,et al.  Nominal and robust train timetabling problems , 2012, Eur. J. Oper. Res..

[39]  Matteo Fischetti,et al.  Modeling and Solving the Train Timetabling Problem , 2002, Oper. Res..

[40]  Frank Fischer,et al.  Dynamic Graph Generation and an Asynchronous Parallel Bundle Method Motivated by Train Timetabling , 2013 .

[41]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[42]  Sunil Mathew,et al.  A generalization of Menger's Theorem , 2011, Appl. Math. Lett..

[43]  Kurt Mehlhorn,et al.  Resource Constrained Shortest Paths , 2000, ESA.

[44]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[45]  Matthew Brand,et al.  Stochastic Shortest Paths Via Quasi-convex Maximization , 2006, ESA.

[46]  Christoph Helmberg,et al.  Towards Solving Very Large Scale Train Timetabling Problems by Lagrangian Relaxation , 2008, ATMOS.

[47]  Steffen Weider,et al.  Integration of Vehicle and Duty Scheduling in Public Transport , 2007 .

[48]  Andrew V. Goldberg,et al.  Route Planning in Transportation Networks , 2015, Algorithm Engineering.

[49]  Ralf Borndörfer,et al.  Integrated Optimization of Rolling Stock Rotations for Intercity Railways , 2016, Transp. Sci..

[50]  Matthias Müller-Hannemann,et al.  Efficient Timetable Information in the Presence of Delays , 2009, Robust and Online Large-Scale Optimization.

[51]  Dorothea Wagner,et al.  Energy-optimal routes for electric vehicles , 2013, SIGSPATIAL/GIS.

[52]  Lisa Fleischer,et al.  Approximating fractional multicommodity flow independent of the number of commodities , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[53]  M. Fischetti,et al.  A Branch-and-Bound Algorithm for the Capacitated Vehicle Routing Problem on Directed Graphs , 1994, Oper. Res..

[54]  Ulrich Derigs,et al.  The Chinese Postman Problem , 1980 .

[55]  Martin Leucker,et al.  Efficient Energy-Optimal Routing for Electric Vehicles , 2011, AAAI.

[56]  Markus Reuther Local Search for the Resource Constrained Assignment Problem , 2014, ATMOS.

[57]  Michel X. Goemans,et al.  On the Single-Source Unsplittable Flow Problem , 1999, Comb..

[58]  E. Martins On a multicriteria shortest path problem , 1984 .

[59]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[60]  Martin Skutella,et al.  Quickest Flows Over Time , 2007, SIAM J. Comput..

[61]  L. Lovász,et al.  Mengerian theorems for paths of bounded length , 1978 .

[62]  Christoph Helmberg,et al.  Dynamic graph generation for the shortest path problem in time expanded networks , 2014, Math. Program..

[63]  David H. Bailey,et al.  Algorithms and applications , 1988 .

[64]  Gilbert Laporte,et al.  Rapid transit network design for optimal cost and origin-destination demand capture , 2013, Comput. Oper. Res..

[65]  P. Jacobsen Safety in numbers: more walkers and bicyclists, safer walking and bicycling , 2003, Injury prevention : journal of the International Society for Child and Adolescent Injury Prevention.

[66]  Nicholas Kalouptsidis,et al.  Efficient Algorithms for , 1999 .

[67]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[68]  Gerard Sierksma,et al.  Tolerance-based Branch and Bound algorithms for the ATSP , 2008, Eur. J. Oper. Res..

[69]  Arthur Warburton,et al.  Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems , 1987, Oper. Res..

[70]  Tadao Takaoka,et al.  Some Extensions of the Bottleneck Paths Problem , 2014, WALCOM.

[71]  Nicos Christofides,et al.  An algorithm for the resource constrained shortest path problem , 1989, Networks.

[72]  Klaus Jansen,et al.  An Approximation Algorithm for the General Routing Problem , 1992, Inf. Process. Lett..

[73]  Geoffrey Exoo On line disjoint paths of bounded length , 1983, Discret. Math..

[74]  Christos D. Zaroliagis,et al.  Distance Oracles for Time-Dependent Networks , 2015, Algorithmica.

[75]  Tadao Takaoka,et al.  Combining the Shortest Paths and the Bottleneck Paths Problems , 2014, ACSC.

[76]  H. Frank,et al.  Shortest Paths in Probabilistic Graphs , 1969, Oper. Res..

[77]  Stefan Funke,et al.  Polynomial-Time Construction of Contraction Hierarchies for Multi-Criteria Objectives , 2013, SOCS.

[78]  Patrice Perny,et al.  Near Admissible Algorithms for Multiobjective Search , 2008, ECAI.

[79]  Joachim M. Buhmann,et al.  Robust optimization in the presence of uncertainty , 2013, ITCS '13.

[80]  Randy Cogill,et al.  Charlottesville bike route planner , 2010, 2010 IEEE Systems and Information Engineering Design Symposium.

[81]  Sabine Storandt,et al.  Quick and energy-efficient routes: computing constrained shortest paths for electric vehicles , 2012, IWCTS '12.

[82]  Daniel Delling,et al.  Time-Dependent SHARC-Routing , 2008, Algorithmica.

[83]  Thomas Erlebach,et al.  Length-bounded cuts and flows , 2006, TALG.

[84]  Per Olov Lindberg,et al.  Railway Timetabling Using Lagrangian Relaxation , 1998, Transp. Sci..

[85]  Peter Sanders,et al.  Time-Dependent Route Planning with Generalized Objective Functions , 2012, ESA.

[86]  Gilbert Laporte,et al.  The Design of Rapid Transit Networks , 2019, Location Science.

[87]  Andrew V. Goldberg,et al.  Computing the shortest path: A search meets graph theory , 2005, SODA '05.

[88]  Robert E. Tarjan,et al.  Algorithms for Two Bottleneck Optimization Problems , 1988, J. Algorithms.

[89]  Tadao Takaoka Sharing information for the all pairs shortest path problem , 2014, Theor. Comput. Sci..

[90]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[91]  Ben Strasser,et al.  Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time , 2014, ATMOS.

[92]  Paolo Toth,et al.  Lower bounds and reduction procedures for the bin packing problem , 1990, Discret. Appl. Math..

[93]  Matús Mihalák,et al.  Robust Routing in Urban Public Transportation: How to Find Reliable Journeys Based on Past Observations , 2013, ATMOS.

[94]  Mikkel Thorup,et al.  Integer priority queues with decrease key in constant time and the single source shortest paths problem , 2003, STOC '03.

[95]  Michael Mitzenmacher,et al.  Improved results for route planning in stochastic transportation , 2000, SODA '01.

[96]  Jean-Yves Potvin,et al.  Vehicle Routing , 2009, Encyclopedia of Optimization.

[97]  Ben Strasser,et al.  Intriguingly Simple and Fast Transit Routing , 2013, SEA.

[98]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[99]  Ran Duan,et al.  Fast algorithms for (max, min)-matrix multiplication and bottleneck shortest paths , 2009, SODA.

[100]  Valentina Cacchiani,et al.  Approaches to a real-world train timetabling problem in a railway node , 2016 .

[101]  John E. Hopcroft,et al.  The Directed Subgraph Homeomorphism Problem , 1978, Theor. Comput. Sci..

[102]  Michael Batty,et al.  A long-time limit of world subway networks , 2011, 1105.5294.

[103]  Sabine Storandt,et al.  Delay-Robustness of Transfer Patterns in Public Transportation Route Planning , 2013, ATMOS.

[104]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[105]  Gilbert Laporte,et al.  A general rapid network design, line planning and fleet investment integrated model , 2016, Ann. Oper. Res..

[106]  Marcus Poggi de Aragão,et al.  Improved Branch-Cut-and-Price for Capacitated Vehicle Routing , 2014, IPCO.

[107]  Greg Norman Frederickson Approximation algorithms for np-hard routing problems. , 1977 .