Broadband subwavelength imaging using a tunable graphene-lens.

Graphene as a one-atom-thick planar sheet can support surface plasmons at infrared (IR) and terahertz (THz) frequencies, opening up exciting possibilities for the emerging research field of graphene plasmonics. Here, we theoretically report that a layered graphene-lens (GL) enables the enhancement of evanescent waves for near-field subdiffractive imaging. Compared to other resonant imaging devices like superlenses, the nonresonant operation of the GL provides the advantages of a broad intrinsic bandwidth and a low sensitivity to losses, while still maintaining a good subwavelength resolution of better than λ/10. Most importantly, thanks to the large tunability of the graphene, we show that our GL is a continuously frequency-tunable subwavelength-imaging device in the IR and THz regions, thus allowing for ultrabroadband spectral applications.

[1]  Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[2]  E. H. Linfoot Principles of Optics , 1961 .

[3]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[4]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[5]  D. Schurig,et al.  The asymmetric lossy near-perfect lens , 2002 .

[6]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[7]  Qian Wang,et al.  Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts , 2003 .

[8]  Artium Khatchatouriants,et al.  Near-field optics: from subwavelength illumination to nanometric shadowing , 2003, Nature Biotechnology.

[9]  F. Keilmann,et al.  Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy , 2004 .

[10]  Thomas Taubner,et al.  Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy. , 2005, Optics express.

[11]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[12]  D. Tsai,et al.  Directed subwavelength imaging using a layered metal-dielectric system , 2006, physics/0608170.

[13]  Thomas Taubner,et al.  Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution. , 2006, Nano letters.

[14]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[15]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[16]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[17]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[18]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[19]  J. Aizpurua,et al.  Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. , 2008, Nano letters.

[20]  Costas M. Soukoulis,et al.  Optical anisotropic metamaterials: Negative refraction and focusing , 2009, 0907.1112.

[21]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[22]  Francesco De Angelis,et al.  Graphene in a photonic metamaterial. , 2010, Optics express.

[23]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[24]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[25]  M. Helm,et al.  Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling , 2011, Nature communications.

[26]  Yongmin Liu,et al.  Microspectroscopy on perovskite-based superlenses [Invited] , 2011 .

[27]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[28]  A. Morpurgo,et al.  Accessing the transport properties of graphene and its multilayers at high carrier density , 2010, Proceedings of the National Academy of Sciences.

[29]  F. Keilmann,et al.  Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy , 2011 .

[30]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[31]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[32]  Zhenhua Ni,et al.  Broadband graphene polarizer , 2011 .

[33]  H. Bechtel,et al.  Drude Conductivity of Dirac Fermions in Graphene , 2010, 1007.4623.

[34]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[35]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[36]  X. Zhang,et al.  Microspectroscopy on perovskite-based superlenses , 2011 .

[37]  C. Neacşu Tip-enhanced near-field optical microscopy , 2011 .

[38]  T. Stauber,et al.  Plasmons and near-field amplification in double-layer graphene , 2011, 1112.0443.

[39]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[40]  S. L. Teo,et al.  High aspect subdiffraction-limit photolithography via a silver superlens. , 2012, Nano letters.

[41]  Choon How Gan,et al.  Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies , 2012, 1203.4308.

[42]  F. Keilmann,et al.  Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. , 2012, Nano letters.

[43]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[44]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[45]  Baile Zhang,et al.  Ultraviolet dielectric hyperlens with layered graphene and boron nitride , 2012, 1205.4823.

[46]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[47]  T. Taubner,et al.  Multi-wavelength superlensing with layered phonon-resonant dielectrics. , 2012, Optics express.

[48]  T. Taubner,et al.  Quasi-analytical model for scattering infrared near-field microscopy on layered systems. , 2012, Optics express.