Biological materials: a materials science approach.

[1]  A. Lin Structural and functional biological materials : abalone nacre, sharp materials, and abalone foot adhesion , 2008 .

[2]  David J. Benson,et al.  The toucan beak: Structure and mechanical response , 2006 .

[3]  P. Clode,et al.  Characterization of biominerals in the radula teeth of the chiton, Acanthopleura hirtosa. , 2009, Journal of structural biology.

[4]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Rüegsegger,et al.  Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. , 1998, Journal of biomechanics.

[6]  M A Meyers,et al.  Structure and mechanical properties of selected biological materials. , 2008, Journal of the mechanical behavior of biomedical materials.

[7]  Alfred J. Crosby,et al.  Designing Model Systems for Enhanced Adhesion , 2007 .

[8]  V. Ernst,et al.  The digital pads of the tree frog, Hyla cinerea. I. The epidermis. , 1973, Tissue & cell.

[9]  M. Meyers,et al.  The growth of nacre in the abalone shell. , 2008, Acta biomaterialia.

[10]  D. Green Treefrog toe pads: comparative surface morphology using scanning electron microscopy , 1979 .

[11]  Markus J. Buehler,et al.  Nano- and micromechanical properties of hierarchical biological materials and tissues , 2007 .

[12]  Dm Green,et al.  Digital microstructure in ecologically diverse sympatric microhylid frogs, genera Cophixalus and Sphenophryne (Amphibia: Anura), from Papua New Guinea , 1986 .

[13]  P Rüegsegger,et al.  Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. , 1995, Medical engineering & physics.

[14]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[15]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[16]  R O Ritchie,et al.  Mechanistic aspects of the fracture toughness of elk antler bone. , 2010, Acta biomaterialia.

[17]  Marc A. Meyers,et al.  Growth and structure in abalone shell , 2005 .

[18]  Huajian Gao Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials , 2006 .

[19]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Huajian Gao,et al.  Reprint of “Multi-scale cohesive laws in hierarchical materials” [In. J. Solids Struct. 44 (2007) 8177–8193]☆ , 2008 .

[21]  Yasuaki Seki,et al.  Structural biological materials: Overview of current research , 2008 .

[22]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[23]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[24]  P. Hansma,et al.  Molecular Cloning and Characterization of Lustrin A, a Matrix Protein from Shell and Pearl Nacre of Haliotis rufescens * , 1997, The Journal of Biological Chemistry.

[25]  Yasuaki Seki,et al.  Structure and mechanical behavior of a toucan beak , 2005 .

[26]  Eduard Arzt,et al.  Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices , 2007 .

[27]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Yasuaki Seki,et al.  The role of organic intertile layer in abalone nacre , 2009 .

[29]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[30]  Joanna Aizenberg,et al.  New Nanofabrication Strategies: Inspired by Biomineralization , 2010 .

[31]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[32]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Michael S Sacks,et al.  On the biomechanical function of scaffolds for engineering load-bearing soft tissues. , 2010, Acta biomaterialia.

[34]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[35]  Hermann Ehrlich,et al.  Chitin and collagen as universal and alternative templates in biomineralization , 2010 .

[36]  Baohua Ji,et al.  Mechanical properties of nanostructure of biological materials , 2004 .

[37]  J. Waite,et al.  Nature's underwater adhesive specialist , 1987 .

[38]  Eduardo Saiz,et al.  Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[39]  Robert Langer,et al.  A biodegradable and biocompatible gecko-inspired tissue adhesive , 2008, Proceedings of the National Academy of Sciences.

[40]  E. R. Trueman,et al.  THE FINE STRUCTURE AND FUNCTION OF THE FOOT OF NASSARIUS KRAUSSIANUS, A GASTROPOD MOVING BY CILIARY LOCOMOTION , 1990 .

[41]  V. Ernst,et al.  The digital pads of the tree frog, Hyla cinerea. II. The mucous glands. , 1973, Tissue & cell.

[42]  P. Fratzl,et al.  Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. , 2000, Biophysical journal.

[43]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[44]  Yasuaki Seki,et al.  Structural biological composites: An overview , 2006 .

[45]  A K Soh,et al.  Structural and mechanical properties of the organic matrix layers of nacre. , 2003, Biomaterials.

[46]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[47]  R O Ritchie,et al.  Mechanistic aspects of fracture and R-curve behavior in human cortical bone. , 2005, Biomaterials.

[48]  Gosline,et al.  Mechanical design of mussel byssus: material yield enhances attachment strength , 1996, The Journal of experimental biology.

[49]  M. Willinger,et al.  The key role of the surface membrane in why gastropod nacre grows in towers , 2009, Proceedings of the National Academy of Sciences.

[50]  Stephen Mann,et al.  Flat pearls from biofabrication of organized composites on inorganic substrates , 1994, Nature.

[51]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[52]  M. Meyers,et al.  Interfacial shear strength in abalone nacre. , 2009, Journal of the mechanical behavior of biomedical materials.

[53]  A. Channing,et al.  Comparison of toe pads of some southern African climbing frogs , 1983 .

[54]  J. McKittrick,et al.  Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). , 2009, Acta biomaterialia.

[55]  M. Meyers,et al.  Growth of nacre in abalone: Seasonal and feeding effects , 2011 .

[56]  Peter Fratzl,et al.  Collagen : structure and mechanics , 2008 .

[57]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[58]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[59]  Eduardo Saiz,et al.  A novel biomimetic approach to the design of high-performance ceramic–metal composites , 2010, Journal of The Royal Society Interface.

[60]  A. Heuer,et al.  Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging , 2004 .

[61]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  W. Barnes,et al.  Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale , 2006, Journal of Comparative Physiology A.

[63]  J. McKittrick,et al.  Microstructure, elastic properties and deformation mechanisms of horn keratin. , 2010, Acta biomaterialia.

[64]  W. Barnes Functional Morphology and Design Constraints of Smooth Adhesive Pads , 2007 .

[65]  X. H. Wu,et al.  Control of crystal phase switching and orientation by soluble mollusc-shell proteins , 1996, Nature.

[66]  U. Welsch,et al.  The fine structure of the digital pads of rhacophorid tree frogs , 1974, Cell and Tissue Research.

[67]  Donovan,et al.  Locomotion in the abalone Haliotis kamtschatkana: pedal morphology and cost of transport , 1997, The Journal of experimental biology.

[68]  Lijie Ci,et al.  Gecko-inspired carbon nanotube-based self-cleaning adhesives. , 2008, Nano letters.

[69]  J. Waite,et al.  Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. , 1981, Science.

[70]  Mehmet Sarikaya,et al.  Mechanical Property-Microstructural Relationships in Abalone Shell , 1989 .

[71]  Markus J. Buehler,et al.  Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture , 2008 .

[72]  R. Guldberg,et al.  Trabecular bone microdamage and microstructural stresses under uniaxial compression. , 2005, Journal of biomechanics.

[73]  R O Ritchie,et al.  Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. , 2006, Biomaterials.

[74]  S. Mann Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry , 2002 .

[75]  F. Talke,et al.  Underwater adhesion of abalone: The role of van der Waals and capillary forces , 2009 .

[76]  Eduard Arzt,et al.  Contact shape controls adhesion of bioinspired fibrillar surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[77]  Eduard Arzt,et al.  Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[78]  Eduard Arzt,et al.  Biological and artificial attachment devices: Lessons for materials scientists from flies and geckos , 2006 .

[79]  Eduard Arzt,et al.  Hierarchical Gecko‐Like Adhesives , 2009 .

[80]  Yasuaki Seki,et al.  Toucan and hornbill beaks: a comparative study. , 2010, Acta biomaterialia.

[81]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[82]  S. Mann,et al.  Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimetic Synthesis , 1993, Science.

[83]  P. Gatenholm,et al.  The barnacle adhesive plaque: morphological and chemical differences as a response to substrate properties , 2003 .

[84]  R. Ballarini,et al.  Structural basis for the fracture toughness of the shell of the conch Strombus gigas , 2000, Nature.

[85]  Huajian Gao,et al.  Multi-scale cohesive laws in hierarchical materials , 2007 .

[86]  W. Barnes,et al.  Mechanical properties of the toe pads of the tree frog, Litoria caerulea , 2005 .

[87]  T S Smith,et al.  Three‐dimensional microimaging (MRμI and μCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis , 2001, The Anatomical record.

[88]  Lorna J. Gibson,et al.  Elastic buckling of cylindrical shells with elastic cores—I. Analysis , 1995 .

[89]  Bharat Bhushan,et al.  Multifunctional surface structures of plants: An inspiration for biomimetics , 2009 .

[90]  W. Barnes,et al.  Adhesion and Detachment of the Toe Pads of Tree Frogs , 1991 .

[91]  M. Meyers,et al.  Structure and mechanical properties of crab exoskeletons. , 2008, Acta biomaterialia.

[92]  E. Olevsky,et al.  Energy absorbent natural materials and bioinspired design strategies: A review , 2010 .

[93]  A. Ugural,et al.  Advanced strength and applied elasticity , 1981 .

[94]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[95]  Eduardo Saiz,et al.  Designing highly toughened hybrid composites through nature-inspired hierarchical complexity , 2009 .

[96]  James C. Weaver,et al.  Analysis of an ultra hard magnetic biomineral in chiton radular teeth , 2010 .

[97]  R. Huiskes,et al.  A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. , 1995, Journal of biomechanics.