Regarding Two Conjectures on Clique and Biclique Partitions

For a graph $G$, let $cp(G)$ denote the minimum number of cliques of $G$ needed to cover the edges of $G$ exactly once. Similarly, let $bp_k(G)$ denote the minimum number of bicliques (i.e. complete bipartite subgraphs of $G$) needed to cover each edge of $G$ exactly $k$ times. We consider two conjectures – one regarding the maximum possible value of $cp(G) + cp(\overline{G})$ (due to de Caen, Erdős, Pullman and Wormald) and the other regarding $bp_k(K_n)$ (due to de Caen, Gregory and Pritikin). We disprove the first, obtaining improved lower and upper bounds on $\max_G cp(G) + cp(\overline{G})$, and we prove an asymptotic version of the second, showing that $bp_k(K_n) = (1+o(1))n$.

[1]  Paul Erdös,et al.  Extremal clique coverings of complementary graphs , 1986, Comb..

[2]  Minimum Biclique Partitions of the Complete Multigraph and Related Designs , 2017 .

[3]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[4]  R. P. Kurshan,et al.  On the addressing problem of loop switching , 1972 .

[5]  Raphael Yuster Integer and fractional packing of families of graphs , 2005, Random Struct. Algorithms.

[6]  Csilla Bujtás,et al.  Clique coverings and claw-free graphs , 2020, Eur. J. Comb..

[7]  Paul Erdös,et al.  Some recent problems and results in graph theory , 1997, Discret. Math..

[8]  Benny Sudakov,et al.  Packing triangles in a graph and its complement , 2004, J. Graph Theory.

[9]  Paul Erdös,et al.  Edge disjoint monochromatic triangles in 2-colored graphs , 2001, Discret. Math..

[10]  András Gyárfás,et al.  Fruit Salad , 1997, Electron. J. Comb..

[11]  J. Orlin Contentment in graph theory: Covering graphs with cliques , 1977 .

[12]  Vojtech Rödl,et al.  Integer and Fractional Packings in Dense Graphs , 2001, Comb..

[13]  P. Erdös,et al.  The Representation of a Graph by Set Intersections , 1966, Canadian Journal of Mathematics.

[14]  Michael Tait,et al.  Variations on a theme of Graham and Pollak , 2013, Discret. Math..

[15]  Hao Huang,et al.  A counterexample to the Alon-Saks-Seymour conjecture and related problems , 2010, Comb..

[16]  W. D. Wallis,et al.  Clique coverings of graphs V: maximal-clique partitions , 1982, Bulletin of the Australian Mathematical Society.

[17]  Stasys Jukna,et al.  On covering graphs by complete bipartite subgraphs , 2009, Discret. Math..

[18]  László Pyber Clique covering of graphs , 1986, Comb..

[19]  Noga Alon,et al.  Neighborly Families of Boxes and Bipartite Coverings , 2013, The Mathematics of Paul Erdős II.