Sketching for M-Estimators: A Unified Approach to Robust Regression
暂无分享,去创建一个
[1] Anirban Dasgupta,et al. Sampling algorithms and coresets for ℓp regression , 2007, SODA '08.
[2] Shang-Hua Teng,et al. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.
[3] Daniel M. Kane,et al. Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.
[4] David P. Woodruff,et al. Optimal approximations of the frequency moments of data streams , 2005, STOC '05.
[5] Wojciech Niemiro. Asymptotics for M-estimators defined by convex minimization , 1992 .
[6] Zhengyou Zhang,et al. Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..
[7] Gary L. Miller,et al. Iterative Approaches to Row Sampling , 2012, ArXiv.
[8] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[9] Bernard Chazelle,et al. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.
[10] Gary L. Miller,et al. Approaching Optimality for Solving SDD Linear Systems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[11] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..
[12] Huy L. Nguyen,et al. OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[13] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[14] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .
[15] Michael W. Mahoney. Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..
[16] Nir Ailon,et al. An almost optimal unrestricted fast Johnson-Lindenstrauss transform , 2010, SODA '11.
[17] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[18] S. Muthukrishnan,et al. Faster least squares approximation , 2007, Numerische Mathematik.
[19] S. Muthukrishnan,et al. Subspace Sampling and Relative-Error Matrix Approximation: Column-Based Methods , 2006, APPROX-RANDOM.
[20] David P. Woodruff,et al. Fast approximation of matrix coherence and statistical leverage , 2011, ICML.
[21] L. M. M.-T.. Theory of Probability , 1929, Nature.
[22] P. J. Huber. Robust Estimation of a Location Parameter , 1964 .
[23] Gary L. Miller,et al. A Nearly-m log n Time Solver for SDD Linear Systems , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.
[24] S. Muthukrishnan,et al. Sampling algorithms for l2 regression and applications , 2006, SODA '06.
[25] David R. Musicant,et al. Robust Linear and Support Vector Regression , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[26] S. Muthukrishnan,et al. Subspace Sampling and Relative-Error Matrix Approximation: Column-Row-Based Methods , 2006, ESA.
[27] Sjoerd Dirksen,et al. Toward a unified theory of sparse dimensionality reduction in Euclidean space , 2013, STOC.
[28] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[29] Gary L. Miller,et al. A ug 2 01 0 Approaching optimality for solving SDD linear systems ∗ , 2011 .
[30] Christos Boutsidis,et al. Improved Matrix Algorithms via the Subsampled Randomized Hadamard Transform , 2012, SIAM J. Matrix Anal. Appl..
[31] R. Ostrovsky,et al. Zero-one frequency laws , 2010, STOC '10.
[32] Dimitris Achlioptas,et al. Fast computation of low-rank matrix approximations , 2007, JACM.
[33] Qin Zhang,et al. Rademacher-Sketch: A Dimensionality-Reducing Embedding for Sum-Product Norms, with an Application to Earth-Mover Distance , 2012, ICALP.
[34] H. Jeffreys,et al. Theory of probability , 1896 .
[35] Antoine Guitton,et al. Robust and stable velocity analysis using the Huber function , 1999 .
[36] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2013, STOC '13.
[37] Michael W. Mahoney,et al. Quantile Regression for Large-Scale Applications , 2013, SIAM J. Sci. Comput..
[38] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[39] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2012, STOC '13.
[40] Michael W. Mahoney,et al. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.
[41] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[42] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[43] Anirban Dasgupta,et al. A sparse Johnson: Lindenstrauss transform , 2010, STOC '10.
[44] Andreas Maurer. A bound on the deviation probability for sums of non-negative random variables. , 2003 .
[45] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[46] David P. Woodruff,et al. Subspace Embeddings and \(\ell_p\)-Regression Using Exponential Random Variables , 2013, COLT.