Author Correction: Positive-negative tunable liquid crystal lenses based on a microstructured transmission line

[1]  J. F. Algorri,et al.  Recent Advances in Adaptive Liquid Crystal Lenses , 2019, Crystals.

[2]  J. L. Zhao,et al.  Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens. , 2019, Optics express.

[3]  Qian Zhang,et al.  Low-voltage-driven smart glass based on micro-patterned liquid crystal Fresnel lenses. , 2019, Applied optics.

[4]  X. Quintana,et al.  Dynamic multilevel spiral phase plate generator , 2018, Scientific Reports.

[5]  S. Kotova,et al.  Formation of ring-shaped light fields with orbital angular momentum using a modal type liquid crystal spatial modulator , 2018 .

[6]  Philip B. Morgan,et al.  Switchable Liquid Crystal Contact Lenses for the Correction of Presbyopia , 2018 .

[7]  X. Quintana,et al.  Liquid-crystal phase-only devices , 2017, Journal of Molecular Liquids.

[8]  J. F. Algorri,et al.  Tunable liquid crystal multifocal microlens array , 2017, Scientific Reports.

[9]  Yi-Hsin Lin,et al.  Liquid crystal lenses with tunable focal length , 2017 .

[10]  J. F. Algorri,et al.  Low aberration and fast switching microlenses based on a novel liquid crystal mixture. , 2017, Optics express.

[11]  S. Lee,et al.  Design and fabrication of liquid crystal-based lenses , 2017 .

[12]  J. F. Algorri,et al.  Liquid crystal spherical microlens array with high fill factor and optical power. , 2017, Optics express.

[13]  J. F. Algorri,et al.  Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses , 2016, IEEE Photonics Technology Letters.

[14]  José Francisco Algorri,et al.  Liquid Crystal Microlenses for Autostereoscopic Displays , 2016, Materials.

[15]  S. Kotova,et al.  Compact optical tweezer with the capability of dynamic control , 2015 .

[16]  J. F. Algorri,et al.  Tunable liquid crystal cylindrical micro-optical array for aberration compensation. , 2015, Optics express.

[17]  J. F. Algorri,et al.  Generation of Optical Vortices by an Ideal Liquid Crystal Spiral Phase Plate , 2014, IEEE Electron Device Letters.

[18]  J. F. Algorri,et al.  Modal liquid crystal microaxicon array. , 2014, Optics letters.

[19]  Jie Sun,et al.  Fast-Response Liquid Crystal Microlens , 2014, Micromachines.

[20]  J. F. Algorri,et al.  Liquid Crystal Lensacons, Logarithmic and Linear Axicons , 2014, Materials.

[21]  J. F. Algorri,et al.  An Autostereoscopic Device for Mobile Applications Based on a Liquid Crystal Microlens Array and an OLED Display , 2014, Journal of Display Technology.

[22]  J. F. Algorri,et al.  Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses. , 2013, The Review of scientific instruments.

[23]  J. F. Algorri,et al.  Modal liquid crystal array of optical elements. , 2013, Optics express.

[24]  I. Moreno,et al.  Liquid Crystal Devices for the Reconfigurable Generation of Optical Vortices , 2012, Journal of Lightwave Technology.

[25]  R. Dabrowski,et al.  High Optical Anisotropy Nematic Single Compounds and Mixtures , 2012 .

[26]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[27]  A. Carrasco,et al.  2D tunable beam steering - lens device based on high birefringence liquid crystals , 2011, 2011 International Conference on Space Optical Systems and Applications (ICSOS).

[28]  V. Patlan,et al.  Tunable liquid-crystal focusing device. 2. Experiment , 2011 .

[29]  V. Patlan,et al.  Tunable liquid-crystal focusing device. 1. Theory , 2011 .

[30]  Gholam A. Peyman,et al.  Nonmechanical bifocal zoom telescope. , 2010, Optics letters.

[31]  V. Patlan,et al.  Wavefront formation using modal liquid-crystal correctors , 2010 .

[32]  P. Chao,et al.  11.1: An Auto‐Stereoscopic 3D Display Using Tunable Liquid Crystal Lens Array That Mimics Effects of GRIN Lenticular Lens Array , 2009 .

[33]  李超,et al.  Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device , 2008 .

[34]  P. Hands,et al.  Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells. , 2006, Optics express.

[35]  Shin-Tson Wu,et al.  Fundamentals of Liquid Crystal Devices , 2006 .

[36]  G. Love,et al.  Modal liquid crystal wavefront corrector. , 2002, Optics express.

[37]  G. Love,et al.  Modal liquid crystal lenses , 2000 .

[38]  G. Vdovin,et al.  Liquid-crystal adaptive lenses with modal control. , 1998, Optics letters.

[39]  M. Dejule,et al.  Three-terminal adaptive nematic liquid-crystal lens device. , 1994, Optics letters.

[40]  N. Tabiryan,et al.  Liquid-crystal photonics , 1994, Conference on Lasers and Electro-Optics Europe.

[41]  Toshiaki Nose,et al.  Optical properties of a liquid crystal microlens , 1990, Marketplace for Industrial Lasers.

[42]  Alan Purvis,et al.  Electrically Controllable Liquid Crystal Fresnel Lens , 1989, Optics & Photonics.

[43]  T. Nose,et al.  A liquid crystal microlens obtained with a non-uniform electric field , 1989 .

[44]  Roman Dabrowski,et al.  4-/Trans-4′-n-Alkylcyclohezxyl/Isothiocyanatobenzenes a New Class Of Low-Melting Stable Nematics , 1984 .

[45]  D. S. Cleverly Creation of a Lens by Field Controlled Variation of the Index Of Refraction in a Liquid Crystal , 1982 .

[46]  S. Kowel,et al.  A liquid crystal adaptive lens , 1981 .

[47]  Susumu Sato Liquid-Crystal Lens-Cells with Variable Focal Length , 1979 .