Asymmetry in tail dependence in equity portfolios

The asymmetry in the tail dependence between U.S. equity portfolios and the aggregate U.S. market is a well-established property. Given the limited number of observations in the tails of a joint distribution, standard non-parametric measures of tail dependence have poor finite-sample properties and generally reject the asymmetry in the tail dependence. A parametric model, based on a multivariate noncentral t distribution, is developed to measure and test asymmetry in tail dependence. This model allows different levels of tail dependence to be estimated depending on the distribution's parameters and accommodates situations in which the volatilities or the correlations across returns are time varying. For most of the size, book-to-market, and momentum portfolios, the tail dependence with the market portfolio is significantly higher on the downside than on the upside. The tail dependence between US equity portfolios and the US market is asymmetric.We describe a multivariate t distribution with asymmetry in the lower and upper tail dependence.The lower and upper tail dependence parameters are estimated by maximum likelihood.The estimated tail dependence parameters are consistent with the data provided volatilities and correlations are allowed to vary over time.

[1]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[2]  Tailen Hsing,et al.  On Tail Index Estimation Using Dependent Data , 1991 .

[3]  Jonathan A. Tawn,et al.  A Comparison of Methods for Estimating the Extremal Index , 2000 .

[4]  Aad van der Vaart,et al.  Tail dependence of skewed grouped t-distributions , 2008 .

[5]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[6]  Eric Jondeau,et al.  Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements , 2003 .

[7]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[8]  Yarema Okhrin,et al.  On the structure and estimation of hierarchical Archimedean copulas , 2013 .

[9]  Viral V. Acharya,et al.  A Tax on Systemic Risk , 2010 .

[10]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[11]  Guofu Zhou,et al.  Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation , 2003 .

[12]  A. Kshirsagar,et al.  Some Extensions of the Multivariate t-Distribution and the Multivariate Generalization of the Distribution of the Regression Coefficient , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Aristidis K. Nikoloulopoulos,et al.  Vine copulas with asymmetric tail dependence and applications to financial return data , 2012, Comput. Stat. Data Anal..

[14]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[15]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[16]  Aad van der Vaart,et al.  Corrigendum to: "Tail dependence of skewed grouped t-distributions" [Statist. Probab. Lett. 78 (2008) 2388-2399] , 2009 .

[17]  Jonathan B. Hill ON TAIL INDEX ESTIMATION FOR DEPENDENT, HETEROGENEOUS DATA , 2010, Econometric Theory.

[18]  Eric Jondeau,et al.  Testing for Differences in the Tails of Stock-Market Returns , 2003 .

[19]  Tae-Hwy Lee,et al.  Copula-based multivariate GARCH model with uncorrelated dependent errors , 2009 .

[20]  Enrique Sentana,et al.  Marginalization and contemporaneous aggregation in multivariate GARCH processes , 1996 .

[21]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[22]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[23]  Enrique Sentana,et al.  Multivariate Location-Scale Mixtures of Normals and Mean-Variance-Skewness Portfolio Allocation , 2009 .

[24]  Catherine S. Forbes,et al.  Increasing Correlations or Just Fat Tails , 2008 .

[25]  Robert F. Engle,et al.  Volatility, Correlation and Tails for Systemic Risk Measurement , 2010 .

[26]  Mico Loretan,et al.  Evaluating Correlation Breakdowns During Periods of Market Volatility , 2000 .

[27]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[29]  J. Tawn,et al.  Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications , 2004 .

[30]  Rostislav S. Protassov,et al.  EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ , 2004, Stat. Comput..

[31]  A. McNeil Multivariate t Distributions and Their Applications , 2006 .

[32]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[33]  Friedrich Schmid,et al.  Dependence of Stock Returns in Bull and Bear Markets , 2010 .

[34]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[35]  Eric Jondeau,et al.  The Impact of Shocks on Higher Moments , 2008 .

[36]  Wenbo Hu,et al.  Portfolio optimization for student t and skewed t returns , 2010 .

[37]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[38]  清水 邦夫 Continuous Univariate Distributions Volume 1/N.L.Johnson,S.Kotz,N.Balakrishnan(1994) , 1995 .

[39]  Andrew Ang,et al.  International Asset Allocation With Regime Shifts , 2002 .

[40]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[41]  D. B. Owen,et al.  A special case of a bivariate non-central t-distribution , 1965 .

[42]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[43]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[44]  Kjersti Aas,et al.  The Generalized Hyperbolic Skew Student’s t-Distribution , 2006 .

[45]  Alec N. Kercheval,et al.  Calibration of multivariate generalized hyperbolic distributions using the em algorithm, with applications in risk management, portfolio optimization and portfolio credit risk , 2005 .