AUGMENTED LAGRANGIAN METHOD FOR TOTAL VARIATION RESTORATION WITH NON-QUADRATIC FIDELITY

Recently augmented Lagrangian method has been successfully applied to image restoration. We extend the method to total variation (TV) restoration models with non-quadratic fidelities. We will first introduce the method and present an iterative algorithm for TV restoration with a quite general fidelity. In each iteration, three sub-problems need to be solved, two of which can be very efficiently solved via Fast Fourier Transform (FFT) implementation or closed form solution. In general the third sub-problem need iterative solvers. We then apply our method to TV restoration with $L^1$ and Kullback-Leibler (KL) fidelities, two common and important data terms for deblurring images corrupted by impulsive noise and Poisson noise, respectively. For these typical fidelities, we show that the third sub-problem also has closed form solution and thus can be efficiently solved. In addition, convergence analysis of these algorithms are given. Numerical experiments demonstrate the efficiency of our method.

[1]  Wotao Yin,et al.  Analysis and Generalizations of the Linearized Bregman Method , 2010, SIAM J. Imaging Sci..

[2]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[3]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[4]  J. Koko,et al.  An Augmented Lagrangian Method for , 2010 .

[5]  Yiqiu Dong,et al.  An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..

[6]  S. Osher,et al.  A new median formula with applications to PDE based denoising , 2009 .

[7]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[8]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration for ROF Model , 2009, SSVM.

[9]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[10]  Martin Burger,et al.  Bregman-EM-TV Methods with Application to Optical Nanoscopy , 2009, SSVM.

[11]  Mário A. T. Figueiredo,et al.  Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[12]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[13]  Junfeng Yang,et al.  A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration , 2009, SIAM J. Imaging Sci..

[14]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[15]  Roland Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem , 2009, J. Num. Math..

[16]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[17]  Michael K. Ng,et al.  A Fast Total Variation Minimization Method for Image Restoration , 2008, Multiscale Model. Simul..

[18]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[19]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[20]  Stephen J. Wright,et al.  Duality-Based Algorithms for Total Variation Image Restoration , 2008 .

[21]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[22]  Raymond H. Chan,et al.  Multilevel algorithm for a Poisson noise removal model with total-variation regularization , 2007 .

[23]  Wotao Yin,et al.  The Total Variation Regularized L1 Model for Multiscale Decomposition , 2007, Multiscale Model. Simul..

[24]  Thomas J. Asaki,et al.  A Variational Approach to Reconstructing Images Corrupted by Poisson Noise , 2007, Journal of Mathematical Imaging and Vision.

[25]  Yin Zhang,et al.  A Fast Algorithm for Image Deblurring with Total Variation Regularization , 2007 .

[26]  Otmar Scherzer,et al.  Denoising with higher order derivatives of bounded variation and an application to parameter estimation , 2007, Computing.

[27]  Kai-Kuang Ma,et al.  A switching median filter with boundary discriminative noise detection for extremely corrupted images , 2006, IEEE Trans. Image Process..

[28]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[29]  E. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[30]  P. Mrázek,et al.  ON ROBUST ESTIMATION AND SMOOTHING WITH SPATIAL AND TONAL KERNELS , 2006 .

[31]  Wotao Yin,et al.  Image Cartoon-Texture Decomposition and Feature Selection Using the Total Variation Regularized L1 Functional , 2005, VLSM.

[32]  Raymond H. Chan,et al.  Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization , 2005, IEEE Transactions on Image Processing.

[33]  Otmar Scherzer,et al.  Variational Methods on the Space of Functions of Bounded Hessian for Convexification and Denoising , 2005, Computing.

[34]  Gabriele Steidl,et al.  A Note on the Dual Treatment of Higher-Order Regularization Functionals , 2005, Computing.

[35]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[36]  Xue-Cheng Tai,et al.  Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional , 2005, International Journal of Computer Vision.

[37]  P. Besbeas,et al.  A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Counts , 2004 .

[38]  Charles Kervrann,et al.  An adaptive window approach for Poisson noise reduction and structure preserving in confocal microscopy , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[39]  T. Chan,et al.  Aspects of Total Variation Regularized L 1 Function Approximation 1 , 2004 .

[40]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[41]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[42]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[43]  Jyh-Charn Liu,et al.  Selective removal of impulse noise based on homogeneity level information , 2003, IEEE Trans. Image Process..

[44]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[45]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[46]  Tony F. Chan,et al.  Total Variation Denoising and Enhancement of Color Images Based on the CB and HSV Color Models , 2001, J. Vis. Commun. Image Represent..

[47]  H. Wu,et al.  Space variant median filters for the restoration of impulse noise corrupted images , 2001 .

[48]  Kai-Kuang Ma,et al.  Noise adaptive soft-switching median filter , 2001, IEEE Trans. Image Process..

[49]  Los Angeles,et al.  Dual Methods for Total Variation-Based Image , 2001 .

[50]  Mostafa Kaveh,et al.  Fourth-order partial differential equations for noise removal , 2000, IEEE Trans. Image Process..

[51]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[52]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[53]  Gengsheng L. Zeng,et al.  Total variation regulated EM algorithm [SPECT reconstruction] , 1999 .

[54]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[55]  Robert D. Nowak,et al.  Multiscale Modeling and Estimation of Poisson Processes with Application to Photon-Limited Imaging , 1999, IEEE Trans. Inf. Theory.

[56]  E. Kolaczyk WAVELET SHRINKAGE ESTIMATION OF CERTAIN POISSON INTENSITY SIGNALS USING CORRECTED THRESHOLDS , 1999 .

[57]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[58]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[59]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[60]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[61]  Richard A. Haddad,et al.  Adaptive median filters: new algorithms and results , 1995, IEEE Trans. Image Process..

[62]  David L. Donoho,et al.  Nonlinear Wavelet Methods for Recovery of Signals, Densities, and Spectra from Indirect and Noisy Da , 1993 .

[63]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[64]  Stefano Alliney,et al.  Digital filters as absolute norm regularizers , 1992, IEEE Trans. Signal Process..

[65]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[66]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[67]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[68]  R. Tyrrell Rockafellar,et al.  A dual approach to solving nonlinear programming problems by unconstrained optimization , 1973, Math. Program..

[69]  M. Hestenes Multiplier and gradient methods , 1969 .

[70]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .