Stability of contact discontinuities in three-dimensional compressible steady flows

Abstract In this paper, we study the stability of contact discontinuities in three-dimensional compressible isentropic steady flows. By developing Kreiss, Coulombel and Secchiʼs arguments for a boundary value problem of hyperbolic equations involving poles in coefficients derived from the linearized problem at a supersonic contact discontinuity, we obtain a necessary and sufficient condition for the linear weak stability of contact discontinuities and observe that only weak Kreiss–Lopatinskii condition holds. Both of planar and non-planar contact discontinuities are studied. The energy estimates of solutions to the linearized problem at a planar contact discontinuity are obtained in the weakly stable region, by constructing the Kreiss symmetrizers microlocally away from the poles of the coefficient matrices, and studying the equations directly at each pole. The linear stability of non-planar contact discontinuities is studied by developing the argument of the planar case and using the calculus of paradifferential operators. The failure of the uniform Kreiss–Lopatinskii condition results in a loss of tangential derivatives of solutions to the linearized boundary value problem with respect to the source terms and boundary data.

[1]  J. Miles On the Reflection of Sound at an Interface of Relative Motion , 1957 .

[2]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[3]  Gui-Qiang G. Chen,et al.  Characteristic Discontinuities and Free Boundary Problems for Hyperbolic Conservation Laws , 2012 .

[4]  D. Michelson Initial-boundary value problems for incomplete singular perturbations of hyperbolic systems , 1989 .

[5]  A. Majda,et al.  The stability of multidimensional shock fronts , 1983 .

[6]  Fang Yu,et al.  Stabilization Effect of Magnetic Fields on Two-Dimensional Compressible Current-Vortex Sheets , 2013 .

[7]  Andrew J. Majda,et al.  Nonlinear development of instabilities in supersonic vortex sheets I. The basic kink modes , 1987 .

[8]  Michael Taylor,et al.  Reflection of singularities of solutions to systems of differential equations , 1975 .

[9]  Nonlinear development of instabilities in supersonic vortex sheets II: resonant interactions among kink modes , 1989 .

[10]  John W. Miles,et al.  On the stability of a plane vortex sheet with respect to three-dimensional disturbances , 1963, Journal of Fluid Mechanics.

[11]  Andrew J. Majda,et al.  Nonlinear kink modes for supersonic vortex sheets , 1989 .

[12]  Gui-Qiang G. Chen,et al.  $L^1$-Stability of Vortex Sheets and Entropy Waves in Steady Compressible Supersonic Euler Flows over Lipschitz Walls , 2012, 1205.4429.

[13]  Jean-François Coulombel,et al.  NONLINEAR COMPRESSIBLE VORTEX SHEETS IN TWO SPACE DIMENSIONS , 2008 .

[14]  J. Cochrane,et al.  Shocks , 1994 .

[15]  Jacques Francheteau,et al.  Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels , 1998, Astérisque.

[16]  John W. Miles,et al.  On the disturbed motion of a plane vortex sheet , 1958, Journal of Fluid Mechanics.

[17]  Michael L. Norman,et al.  Shocks, interfaces, and patterns in supersonic jets , 1984 .

[18]  Tao Wang,et al.  Two-dimensional vortex sheets for the nonisentropic Euler equations: Nonlinear stability , 2008, Journal of Differential Equations.

[19]  S. Alinhac,et al.  Existence d'ondes de rarefaction pour des systems quasi‐lineaires hyperboliques multidimensionnels , 1989 .

[20]  Dianwen Zhu,et al.  Stability of Compressible Vortex Sheets in Steady Supersonic Euler Flows over Lipschitz Walls , 2007, SIAM J. Math. Anal..

[21]  Beixiang Fang,et al.  Stability of reflection and refraction of shocks on interface , 2008 .

[22]  Beixiang Fang,et al.  Reflection and refraction of shocks on an interface with a reflected rarefaction wave , 2011 .

[23]  A. Majda,et al.  The existence of multidimensional shock fronts , 1983 .

[24]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[25]  Andrew J. Majda,et al.  Initial‐boundary value problems for hyperbolic equations with uniformly characteristic boundary , 1975 .

[26]  Gui-Qiang Chen,et al.  Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics , 2006 .

[27]  Jean-François Coulombel,et al.  Weakly stable multidimensional shocks , 2004 .

[28]  Yuri Trakhinin,et al.  The Existence of Current-Vortex Sheets in Ideal Compressible Magnetohydrodynamics , 2009 .

[29]  Yuri Trakhinin,et al.  Existence of Compressible Current-Vortex Sheets: Variable Coefficients Linear Analysis , 2005 .

[30]  Guy Métivier,et al.  Stability of Multidimensional Shocks , 2001 .

[31]  Jean-François Coulombel,et al.  On the transition to instability for compressible vortex sheets , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[32]  P. Lax,et al.  Systems of conservation laws , 1960 .

[33]  D. Serre Systems of conservation laws , 1999 .