Stability of contact discontinuities in three-dimensional compressible steady flows
暂无分享,去创建一个
[1] J. Miles. On the Reflection of Sound at an Interface of Relative Motion , 1957 .
[2] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[3] Gui-Qiang G. Chen,et al. Characteristic Discontinuities and Free Boundary Problems for Hyperbolic Conservation Laws , 2012 .
[4] D. Michelson. Initial-boundary value problems for incomplete singular perturbations of hyperbolic systems , 1989 .
[5] A. Majda,et al. The stability of multidimensional shock fronts , 1983 .
[6] Fang Yu,et al. Stabilization Effect of Magnetic Fields on Two-Dimensional Compressible Current-Vortex Sheets , 2013 .
[7] Andrew J. Majda,et al. Nonlinear development of instabilities in supersonic vortex sheets I. The basic kink modes , 1987 .
[8] Michael Taylor,et al. Reflection of singularities of solutions to systems of differential equations , 1975 .
[9] Nonlinear development of instabilities in supersonic vortex sheets II: resonant interactions among kink modes , 1989 .
[10] John W. Miles,et al. On the stability of a plane vortex sheet with respect to three-dimensional disturbances , 1963, Journal of Fluid Mechanics.
[11] Andrew J. Majda,et al. Nonlinear kink modes for supersonic vortex sheets , 1989 .
[12] Gui-Qiang G. Chen,et al. $L^1$-Stability of Vortex Sheets and Entropy Waves in Steady Compressible Supersonic Euler Flows over Lipschitz Walls , 2012, 1205.4429.
[13] Jean-François Coulombel,et al. NONLINEAR COMPRESSIBLE VORTEX SHEETS IN TWO SPACE DIMENSIONS , 2008 .
[14] J. Cochrane,et al. Shocks , 1994 .
[15] Jacques Francheteau,et al. Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels , 1998, Astérisque.
[16] John W. Miles,et al. On the disturbed motion of a plane vortex sheet , 1958, Journal of Fluid Mechanics.
[17] Michael L. Norman,et al. Shocks, interfaces, and patterns in supersonic jets , 1984 .
[18] Tao Wang,et al. Two-dimensional vortex sheets for the nonisentropic Euler equations: Nonlinear stability , 2008, Journal of Differential Equations.
[19] S. Alinhac,et al. Existence d'ondes de rarefaction pour des systems quasi‐lineaires hyperboliques multidimensionnels , 1989 .
[20] Dianwen Zhu,et al. Stability of Compressible Vortex Sheets in Steady Supersonic Euler Flows over Lipschitz Walls , 2007, SIAM J. Math. Anal..
[21] Beixiang Fang,et al. Stability of reflection and refraction of shocks on interface , 2008 .
[22] Beixiang Fang,et al. Reflection and refraction of shocks on an interface with a reflected rarefaction wave , 2011 .
[23] A. Majda,et al. The existence of multidimensional shock fronts , 1983 .
[24] Richard Courant,et al. Supersonic Flow And Shock Waves , 1948 .
[25] Andrew J. Majda,et al. Initial‐boundary value problems for hyperbolic equations with uniformly characteristic boundary , 1975 .
[26] Gui-Qiang Chen,et al. Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics , 2006 .
[27] Jean-François Coulombel,et al. Weakly stable multidimensional shocks , 2004 .
[28] Yuri Trakhinin,et al. The Existence of Current-Vortex Sheets in Ideal Compressible Magnetohydrodynamics , 2009 .
[29] Yuri Trakhinin,et al. Existence of Compressible Current-Vortex Sheets: Variable Coefficients Linear Analysis , 2005 .
[30] Guy Métivier,et al. Stability of Multidimensional Shocks , 2001 .
[31] Jean-François Coulombel,et al. On the transition to instability for compressible vortex sheets , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[32] P. Lax,et al. Systems of conservation laws , 1960 .
[33] D. Serre. Systems of conservation laws , 1999 .