Multi-Timescale Online Optimization of Network Function Virtualization for Service Chaining

Network Function Virtualization (NFV) can cost-efficiently provide network services by running different virtual network functions (VNFs) at different virtual machines (VMs) in a correct order. This can result in strong couplings between the decisions of the VMs on the placement and operations of VNFs. This paper presents a new fully decentralized online approach for optimal placement and operations of VNFs. Building on a new stochastic dual gradient method, our approach decouples the real-time decisions of VMs, asymptotically minimizes the time-average cost of NFV, and stabilizes the backlogs of network services with a cost-backlog tradeoff of <inline-formula><tex-math notation="LaTeX">$[\epsilon, 1/\epsilon ]$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>[</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>ε</mml:mi><mml:mo>]</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq1-2885301.gif"/></alternatives></inline-formula>, for any <inline-formula><tex-math notation="LaTeX">$\epsilon > 0$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>ε</mml:mi><mml:mo>></mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq2-2885301.gif"/></alternatives></inline-formula>. Our approach can be relaxed into multiple timescales to have VNFs (re)placed at a larger timescale and hence alleviate service interruptions. While proved to preserve the asymptotic optimality, the larger timescale can slow down the optimal placement of VNFs. A learn-and-adapt strategy is further designed to speed the placement up with an improved tradeoff <inline-formula><tex-math notation="LaTeX">$[\epsilon, \log ^2(\epsilon)/{\sqrt{\epsilon }}]$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>[</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:msup><mml:mo form="prefix">log</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>ε</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>/</mml:mo><mml:msqrt><mml:mi>ε</mml:mi></mml:msqrt><mml:mo>]</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq3-2885301.gif"/></alternatives></inline-formula>. Numerical results show that the proposed method is able to reduce the time-average cost of NFV by 23 percent and reduce the queue length (or delay) by 74 percent, as compared to existing benchmarks.

[1]  Filip De Turck,et al.  Network Function Virtualization: State-of-the-Art and Research Challenges , 2015, IEEE Communications Surveys & Tutorials.

[2]  Min Chen,et al.  Software-Defined Network Function Virtualization: A Survey , 2015, IEEE Access.

[3]  Min Dong,et al.  Distributed Real-Time Power Balancing in Renewable-Integrated Power Grids With Storage and Flexible Loads , 2015, IEEE Transactions on Smart Grid.

[4]  Gang Wang,et al.  Protocol Function Block Mapping of Software Defined Protocol for 5G Mobile Networks , 2018, IEEE Transactions on Mobile Computing.

[5]  Xin Wang,et al.  Real-Time Energy Trading and Future Planning for Fifth Generation Wireless Communications , 2017, IEEE Wireless Communications.

[6]  Xin Wang,et al.  Distributed Stochastic Optimization of Network Function Virtualization , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[7]  Jaime Llorca,et al.  Approximation algorithms for the NFV service distribution problem , 2017, IEEE INFOCOM 2017 - IEEE Conference on Computer Communications.

[8]  Otto Carlos Muniz Bandeira Duarte,et al.  Orchestrating Virtualized Network Functions , 2015, IEEE Transactions on Network and Service Management.

[9]  Xiaojing Chen,et al.  Two-Scale Stochastic Control for Integrated Multipoint Communication Systems With Renewables , 2018, IEEE Transactions on Smart Grid.

[10]  Quanyan Zhu,et al.  Nonlinear Quadratic Pricing for Concavifiable Utilities in Network Rate Control , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[11]  Tarik Taleb,et al.  Cost analysis of initial deployment strategies for virtualized mobile core network functions , 2015, IEEE Communications Magazine.

[12]  Michael J. Neely Optimal Backpressure Routing for Wireless Networks with Multi-Receiver Diversity , 2006 .

[13]  Chadi Assi,et al.  Delay-Aware Scheduling and Resource Optimization With Network Function Virtualization , 2016, IEEE Transactions on Communications.

[14]  Dusit Niyato,et al.  A Dynamic Offloading Algorithm for Mobile Computing , 2012, IEEE Transactions on Wireless Communications.

[15]  Zhenni Li,et al.  Cost-Aware Streaming Workflow Allocation on Geo-Distributed Data Centers , 2017, IEEE Transactions on Computers.

[16]  Wei Ni,et al.  Multi-Timescale Decentralized Online Orchestration of Software-Defined Networks , 2018, IEEE Journal on Selected Areas in Communications.

[17]  Athanasios V. Vasilakos,et al.  An Online Mechanism for Resource Allocation and Pricing in Clouds , 2016, IEEE Transactions on Computers.

[18]  Xin Wang,et al.  Dynamic Resource Allocation for Smart-Grid Powered MIMO Downlink Transmissions , 2016, IEEE Journal on Selected Areas in Communications.

[19]  Mostafa Ammar,et al.  An Approach for Service Function Chain Routing and Virtual Function Network Instance Migration in Network Function Virtualization Architectures , 2017, IEEE/ACM Transactions on Networking.

[20]  Xin Wang,et al.  Dynamic Energy Management for Smart-Grid-Powered Coordinated Multipoint Systems , 2016, IEEE Journal on Selected Areas in Communications.

[21]  Longbo Huang,et al.  The Optimality of Two Prices: Maximizing Revenue in a Stochastic Communication System , 2010, IEEE/ACM Transactions on Networking.

[22]  Joseph Naor,et al.  Near optimal placement of virtual network functions , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[23]  Min Dong,et al.  Multi-Channel Resource Allocation Toward Ergodic Rate Maximization for Underlay Device-to-Device Communications , 2018, IEEE Transactions on Wireless Communications.

[24]  Mostafa Ammar,et al.  Migration Energy Aware Reconfigurations of Virtual Network Function Instances in NFV Architectures , 2017, IEEE Access.

[25]  Qing Ling,et al.  Learn-and-Adapt Stochastic Dual Gradients for Network Resource Allocation , 2017, IEEE Transactions on Control of Network Systems.

[26]  Roberto Riggio,et al.  Scheduling Wireless Virtual Networks Functions , 2016, IEEE Transactions on Network and Service Management.

[27]  Seungjoon Lee,et al.  Network function virtualization: Challenges and opportunities for innovations , 2015, IEEE Communications Magazine.

[28]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[29]  EramoVincenzo,et al.  An Approach for Service Function Chain Routing and Virtual Function Network Instance Migration in Network Function Virtualization Architectures , 2017 .

[30]  Zafer Korkmaz,et al.  Understanding and applying precision time protocol , 2015, 2015 Saudi Arabia Smart Grid (SASG).

[31]  Vincenzo Eramo,et al.  Server Resource Dimensioning and Routing of Service Function Chain in NFV Network Architectures , 2016, J. Electr. Comput. Eng..

[32]  Filip De Turck,et al.  Design and evaluation of algorithms for mapping and scheduling of virtual network functions , 2015, Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft).

[33]  Longbo Huang,et al.  Power Cost Reduction in Distributed Data Centers: A Two-Time-Scale Approach for Delay Tolerant Workloads , 2015, IEEE Transactions on Parallel and Distributed Systems.

[34]  Stefano Secci,et al.  Virtual network functions placement and routing optimization , 2015, 2015 IEEE 4th International Conference on Cloud Networking (CloudNet).