From Chemical Topology to Molecular Machines (Nobel Lecture).

To a large extent, the field of "molecular machines" started after several groups were able to prepare, reasonably easily, interlocking ring compounds (named catenanes for compounds consisting of interlocking rings and rotaxanes for rings threaded by molecular filaments or axes). Important families of molecular machines not belonging to the interlocking world were also designed, prepared, and studied but, for most of them, their elaboration was more recent than that of catenanes or rotaxanes. Since the creation of interlocking ring molecules is so important in relation to the molecular machinery area, we will start with this aspect of our work. The second part will naturally be devoted to the dynamic properties of such systems and to the compounds for which motions can be directed in a controlled manner from the outside, that is, molecular machines. We will restrict our discussion to a very limited number of examples which we consider as particularly representative of the field.

[1]  D. McMillin,et al.  Photoluminescence from copper(I) complexes with low-lying metal-to-ligand charge transfer excited states , 1978 .

[2]  F. Vögtle,et al.  One‐Step Synthesis of a Fourfold Functionalized Catenane , 1992 .

[3]  Jean-Pierre Sauvage,et al.  High-yield synthesis of multiring copper(I) catenates by acetylenic oxidative coupling , 1986 .

[4]  J. Lux,et al.  A rapidly shuttling copper-complexed [2]rotaxane with three different chelating groups in its axis. , 2009, Angewandte Chemie.

[5]  S. Lincoln,et al.  The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. , 2008, Chemical communications.

[6]  J. Fraser Stoddart,et al.  The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .

[7]  David J. Williams,et al.  Ein [2]‐Catenan auf Bestellung , 1989 .

[8]  Gottfried Schill,et al.  The Preparation of Catena Compounds by Directed Synthesis , 1964 .

[9]  David A. Leigh,et al.  Catenane: fünfzig Jahre molekulare Verschlingungen , 2015 .

[10]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[11]  Y. Takashima,et al.  Contraction of supramolecular double-threaded dimer formed by alpha-cyclodextrin with a long alkyl chain. , 2007, Organic letters.

[12]  Jean-Pierre Sauvage,et al.  Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.

[13]  Emilie Moulin,et al.  Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. , 2012, Angewandte Chemie.

[14]  Jean-Pierre Sauvage,et al.  A Synthetic Molecular Trefoil Knot , 1989 .

[15]  Jean-Pierre Sauvage,et al.  Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation , 1985 .

[16]  J. Sauvage,et al.  Eine Kleeblattknoten‐Verbindung , 1989 .

[17]  Vincenzo Balzani,et al.  Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. , 1997, Journal of the American Chemical Society.

[18]  Bernhard Mohr,et al.  Effiziente Synthese von [2]‐Catenanen durch intramolekulare Olefinmetathese , 1997 .

[19]  Frank Baumann,et al.  Changeover in a multimodal copper(ii) catenate as monitored by EPRspectroscopy , 1997 .

[20]  D. McMillin,et al.  Bis(2,9-diphenyl-1,10-phenanthroline)copper(I): a copper complex with a long-lived charge-transfer excited state , 1983 .

[21]  H. Ogino Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .

[22]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[23]  E. Zysman‐Colman,et al.  Synthesis of a D3-symmetric "trefoil" knotted cyclophane. , 2011, Chemical communications.

[24]  J. Lehn,et al.  Hydrogen Generation by Visible Light Irradiation of Aqueous Solutions of Metal Complexes. An approach to the photochemical conversion and storage of solar energy , 1979 .

[25]  Gottfried Schill,et al.  Gezielte Synthese von Catena‐Verbindungen [1] , 1964 .

[26]  J. Fraser Stoddart,et al.  Eine photochemisch betriebene molekulare Maschine , 1993 .

[27]  C. Hunter Synthesis and structure elucidation of a new [2]-catenane , 1992 .

[28]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[29]  Frédéric Coutrot,et al.  A new pH-switchable dimannosyl[c2]daisy chain molecular machine. , 2008, Organic letters.

[30]  Douglas Philp,et al.  A Photochemically Driven Molecular Machine , 1993 .

[31]  D. Busch,et al.  Reactions of Coordinated Ligands. IX. Utilization of the Template Hypothesis to Synthesize Macrocyclic Ligands in Situ , 1964 .

[32]  Jean-Pierre Sauvage,et al.  Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .

[33]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[34]  Lei Fang,et al.  An acid-base-controllable [c2]daisy chain. , 2008, Angewandte Chemie.

[35]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[36]  G. Schill Catenanes, Rotaxanes, and Knots , 2013 .

[37]  C. Dietrich-Buchecker,et al.  Synthesis of a doubly interlocked [2]-catenane. , 1994, Journal of the American Chemical Society.

[38]  F. Vögtle,et al.  Einstufige Synthese eines vierfach funktionalisierten Catenans , 1992 .

[39]  David A Leigh,et al.  Catenanes: Fifty Years of Molecular Links , 2015, Angewandte Chemie.

[40]  J. Sauvage,et al.  Fast electrochemically induced translation of the ring in a copper-complexed [2]rotaxane: the biisoquinoline effect. , 2007, Angewandte Chemie.

[41]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[42]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[43]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[44]  J Fraser Stoddart,et al.  Chemical topology: complex molecular knots, links, and entanglements. , 2011, Chemical reviews.

[45]  M. Fujita,et al.  Quantitative self-assembly of a [2]catenane from two preformed molecular rings , 1994, Nature.

[46]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[47]  Robert H. Grubbs,et al.  High‐Yield Synthesis of [2] Catenanes by Intramolecular Ring‐Closing Metathesis , 1997 .

[48]  J. Sauvage,et al.  Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water , 1984 .