From Chemical Topology to Molecular Machines (Nobel Lecture).
暂无分享,去创建一个
[1] D. McMillin,et al. Photoluminescence from copper(I) complexes with low-lying metal-to-ligand charge transfer excited states , 1978 .
[2] F. Vögtle,et al. One‐Step Synthesis of a Fourfold Functionalized Catenane , 1992 .
[3] Jean-Pierre Sauvage,et al. High-yield synthesis of multiring copper(I) catenates by acetylenic oxidative coupling , 1986 .
[4] J. Lux,et al. A rapidly shuttling copper-complexed [2]rotaxane with three different chelating groups in its axis. , 2009, Angewandte Chemie.
[5] S. Lincoln,et al. The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. , 2008, Chemical communications.
[6] J. Fraser Stoddart,et al. The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .
[7] David J. Williams,et al. Ein [2]‐Catenan auf Bestellung , 1989 .
[8] Gottfried Schill,et al. The Preparation of Catena Compounds by Directed Synthesis , 1964 .
[9] David A. Leigh,et al. Catenane: fünfzig Jahre molekulare Verschlingungen , 2015 .
[10] N. Harada,et al. Light-driven monodirectional molecular rotor , 2022 .
[11] Y. Takashima,et al. Contraction of supramolecular double-threaded dimer formed by alpha-cyclodextrin with a long alkyl chain. , 2007, Organic letters.
[12] Jean-Pierre Sauvage,et al. Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.
[13] Emilie Moulin,et al. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. , 2012, Angewandte Chemie.
[14] Jean-Pierre Sauvage,et al. A Synthetic Molecular Trefoil Knot , 1989 .
[15] Jean-Pierre Sauvage,et al. Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation , 1985 .
[16] J. Sauvage,et al. Eine Kleeblattknoten‐Verbindung , 1989 .
[17] Vincenzo Balzani,et al. Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. , 1997, Journal of the American Chemical Society.
[18] Bernhard Mohr,et al. Effiziente Synthese von [2]‐Catenanen durch intramolekulare Olefinmetathese , 1997 .
[19] Frank Baumann,et al. Changeover in a multimodal copper(ii) catenate as monitored by EPRspectroscopy , 1997 .
[20] D. McMillin,et al. Bis(2,9-diphenyl-1,10-phenanthroline)copper(I): a copper complex with a long-lived charge-transfer excited state , 1983 .
[21] H. Ogino. Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .
[22] David J. Williams,et al. A [2] Catenane Made to Order , 1989 .
[23] E. Zysman‐Colman,et al. Synthesis of a D3-symmetric "trefoil" knotted cyclophane. , 2011, Chemical communications.
[24] J. Lehn,et al. Hydrogen Generation by Visible Light Irradiation of Aqueous Solutions of Metal Complexes. An approach to the photochemical conversion and storage of solar energy , 1979 .
[25] Gottfried Schill,et al. Gezielte Synthese von Catena‐Verbindungen [1] , 1964 .
[26] J. Fraser Stoddart,et al. Eine photochemisch betriebene molekulare Maschine , 1993 .
[27] C. Hunter. Synthesis and structure elucidation of a new [2]-catenane , 1992 .
[28] Jean-Pierre Sauvage,et al. Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.
[29] Frédéric Coutrot,et al. A new pH-switchable dimannosyl[c2]daisy chain molecular machine. , 2008, Organic letters.
[30] Douglas Philp,et al. A Photochemically Driven Molecular Machine , 1993 .
[31] D. Busch,et al. Reactions of Coordinated Ligands. IX. Utilization of the Template Hypothesis to Synthesize Macrocyclic Ligands in Situ , 1964 .
[32] Jean-Pierre Sauvage,et al. Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .
[33] J. F. Stoddart,et al. A chemically and electrochemically switchable molecular shuttle , 1994, Nature.
[34] Lei Fang,et al. An acid-base-controllable [c2]daisy chain. , 2008, Angewandte Chemie.
[35] Bonnie A. Sheriff,et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.
[36] G. Schill. Catenanes, Rotaxanes, and Knots , 2013 .
[37] C. Dietrich-Buchecker,et al. Synthesis of a doubly interlocked [2]-catenane. , 1994, Journal of the American Chemical Society.
[38] F. Vögtle,et al. Einstufige Synthese eines vierfach funktionalisierten Catenans , 1992 .
[39] David A Leigh,et al. Catenanes: Fifty Years of Molecular Links , 2015, Angewandte Chemie.
[40] J. Sauvage,et al. Fast electrochemically induced translation of the ring in a copper-complexed [2]rotaxane: the biisoquinoline effect. , 2007, Angewandte Chemie.
[41] Jean-Pierre Sauvage,et al. Une nouvelle famille de molecules : les metallo-catenanes , 1983 .
[42] Vincenzo Balzani,et al. Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .
[43] M. Jiménez,et al. Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .
[44] J Fraser Stoddart,et al. Chemical topology: complex molecular knots, links, and entanglements. , 2011, Chemical reviews.
[45] M. Fujita,et al. Quantitative self-assembly of a [2]catenane from two preformed molecular rings , 1994, Nature.
[46] A. Harada,et al. Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.
[47] Robert H. Grubbs,et al. High‐Yield Synthesis of [2] Catenanes by Intramolecular Ring‐Closing Metathesis , 1997 .
[48] J. Sauvage,et al. Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water , 1984 .