Loss-of-function genomic variants with impact on liver-related blood traits highlight potential therapeutic targets for cardiovascular disease

Cardiovascular diseases (CVD), and in particular cerebrovascular and ischemic heart diseases, are leading causes of death globally.1 Lowering circulating lipids is an important treatment strategy to reduce risk.2,3 However, some pharmaceutical mechanisms of reducing CVD may increase risk of fatty liver disease or other metabolic disorders.4,5,6 To identify potential novel therapeutic targets, which may reduce risk of CVD without increasing risk of metabolic disease, we focused on the simultaneous evaluation of quantitative traits related to liver function and CVD. Using a combination of low-coverage (5×) whole-genome sequencing and targeted genotyping, deep genotype imputation based on the TOPMed reference panel7, and genome-wide association study (GWAS) meta-analysis, we analyzed 12 liver-related blood traits (including liver enzymes, blood lipids, and markers of iron metabolism) in up to 203,476 people from three population-based cohorts of different ancestries. We identified 88 likely causal protein-altering variants that were associated with one or more liver-related blood traits. We identified several loss-of-function (LoF) variants reducing low-density lipoprotein cholesterol (LDL-C) or risk of CVD without increased risk of liver disease or diabetes, including variants in known lipid genes (e.g. APOB, LPL). A novel LoF variant, ZNF529:p.K405X, was associated with decreased levels of LDL-C (P=1.3×10−8) but demonstrated no association with liver enzymes or non-fasting blood glucose levels. Silencing of ZNF529 in human hepatocytes resulted in upregulation of LDL receptor (LDLR) and increased LDL-C uptake in the cells, suggesting that inhibition of ZNF529 or its gene product could be used for treating hypercholesterolemia and hence reduce the risk of CVD. Taken together, we demonstrate that simultaneous consideration of multiple phenotypes and a focus on rare protein-altering variants may identify promising therapeutic targets.

Nicholette D. Palmer | A. Reiner | G. Abecasis | H. Kang | D. Schlessinger | M. Boehnke | W. Sheu | E. Bleecker | P. Ellinor | R. Vasan | Albert Vernon Smith | C. Kooperberg | J. Blangero | S. Weiss | C. Willer | S. Kathiresan | K. Taylor | J. Rotter | L. Becker | A. Ashley-Koch | Seunggeun Lee | K. Barnes | L. Bielak | P. Peyser | I. Surakka | M. Zawistowski | L. Cupples | S. Kheterpal | Xiuqing Guo | R. Jackson | P. Natarajan | James G. Wilson | S. Rich | Jennifer A. Smith | F. Cucca | D. Arnett | S. Choi | S. Musani | K. Schwander | L. Yanek | A. Correa | N. Palmer | Wei Zhou | J. Nielsen | L. Fritsche | W. Hornsby | Y. E. Chen | C. Brummett | D. Meyers | O. Holmen | K. Hveem | C. Sidore | Yii-Der I. Chen | R. Mathias | Sayantani Das | J. Curran | C. Fuchsberger | M. Telen | J. Peralta | S. Lubitz | B. Åsvold | M. E. Gabrielsen | Xingnan Li | R. Chung | T. Blackwell | S. Graham | R. Tracy | S. Aslibekyan | V. Sheehan | Jifeng Zhang | M. Irvin | Yingze Zhang | B. Brumpton | N. Rafaels | J. Lasky-Su | O. Rom | Tanmoy Roychowdhury | S. A. Gagliano Taliun | Yuhao Liu | A. H. Skogholt | B. Wolford | William Overton | Akua Acheampong | Austen Grooms | Amanda M Schaefer | G. Zajac | L. Villacorta | M. Løset | Vivek Rai | M. Daya | B. Konkle | J. Johnsen | C. Montgomery | S. Nouraie | V. Gordeuk | Ketian Yu | J. LeFaive | D. Taliun | S. Zollner | L. Forer | S. Schoenherr | A. Pandit | Bertha A. Hildalgo | S. Weiss | A. Smith | T. Roychowdhury | J. Nielsen | Y. Chen | M. Gabrielsen | J. Lefaive | R. Jackson | A. Smith | Bertha Hildalgo | S. G. Gagliano Taliun | Anita Pandit | Amanda M. Schaefer | A. Skogholt | K. Taylor | A. Correa | Daniel Taliun | Jennifer A. Smith | K. Taylor | R. Jackson

[1]  T. Hankemeier,et al.  Genome-wide association study of plasma lipids , 2019, bioRxiv.

[2]  S. Bertolini,et al.  Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride. , 2017, Journal of Clinical Lipidology.

[3]  J. Zmuda,et al.  Rare coding variants in ALPL are associated with low serum alkaline phosphatase and low bone mineral density , 2012, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[4]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[5]  Miles Parkes,et al.  Genetic insights into common pathways and complex relationships among immune-mediated diseases , 2013, Nature Reviews Genetics.

[6]  Sara M. Willems,et al.  The impact of low-frequency and rare variants on lipid levels , 2015, Nature Genetics.

[7]  Alan M. Kwong,et al.  Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers , 2015, Nature Genetics.

[8]  Y. E. Chen,et al.  In situ generation, metabolism and immunomodulatory signaling actions of nitro-conjugated linoleic acid in a murine model of inflammation , 2018, Redox biology.

[9]  N. Chalasani,et al.  Glycosylphosphatidylinositol-specific phospholipase d in nonalcoholic Fatty liver disease: a preliminary study. , 2006, The Journal of clinical endocrinology and metabolism.

[10]  Melissa A. Basford,et al.  Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data , 2013, Nature Biotechnology.

[11]  C. Ramírez,et al.  Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells , 2016, Nature Communications.

[12]  Lars G Fritsche,et al.  Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies , 2017, Nature Genetics.

[13]  Raquel S. Sevilla,et al.  Exome-wide association study of plasma lipids in >300,000 individuals , 2017, Nature Genetics.

[14]  Tanya M. Teslovich,et al.  The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits , 2012, PLoS genetics.

[15]  Wei Zhou,et al.  Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts , 2019, Nature Genetics.

[16]  Christian Gieger,et al.  Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma , 2011, Nature Genetics.

[17]  Scandinavian Simvastatin Survival Study Group Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S) , 1994, The Lancet.

[18]  H. Kang,et al.  Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.

[19]  Xueding Wang,et al.  Nitro-fatty acids protect against steatosis and fibrosis during development of nonalcoholic fatty liver disease in mice , 2019, EBioMedicine.

[20]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[21]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[22]  Y. Kan,et al.  beta zero thalassemia in Sardinia is caused by a nonsense mutation. , 1981, The Journal of clinical investigation.

[23]  M. Karimi,et al.  Serum lipid profiles in patients with beta-thalassemia major and intermedia in southern Iran , 2010, Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences.

[24]  L. Goldstein,et al.  Statin Safety and Associated Adverse Events: A Scientific Statement From the American Heart Association , 2019, Arteriosclerosis, thrombosis, and vascular biology.

[25]  Y. E. Chen,et al.  Brown Adipocyte-Specific PPAR&ggr; (Peroxisome Proliferator-Activated Receptor &ggr;) Deletion Impairs Perivascular Adipose Tissue Development and Enhances Atherosclerosis in Mice , 2018, Arteriosclerosis, thrombosis, and vascular biology.

[26]  A. Khera,et al.  2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. , 2019, Circulation.

[27]  G. Boysen,et al.  European Guidelines on Cardiovascular Disease Prevention , 2009, International journal of stroke : official journal of the International Stroke Society.

[28]  J. Schofield,et al.  Structure and expression of the human glycosylphosphatidylinositol phospholipase D1 (GPLD1) gene. , 2000, Biochimica et Biophysica Acta.

[29]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[30]  N. Voelkel,et al.  Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia-reperfusion injury. , 2011, Journal of molecular and cellular cardiology.

[31]  Shah Ebrahim,et al.  European Guidelines on Cardiovascular Disease Prevention in Clinical Practice (Version 2012) , 2012, International Journal of Behavioral Medicine.

[32]  K. Hveem,et al.  COHORT PROFILE Cohort Profile : The HUNT Study , Norway , 2013 .

[33]  D. Goff,et al.  Erratum: 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (J Am Coll Cardiol (2013) DOI:10.1016/j.jacc.2013.11.005) , 2014 .

[34]  Tanya M. Teslovich,et al.  Genetics of Blood Lipids Among ~300,000 Multi-Ethnic Participants of the Million Veteran Program , 2018, Nature Genetics.

[35]  Edwin K Silverman,et al.  Clinical practice. Alpha1-antitrypsin deficiency. , 2009, New England Journal of Medicine.

[36]  Joshua C. Denny,et al.  Developing and Evaluating Mappings of ICD-10 and ICD-10-CM Codes to Phecodes , 2018, bioRxiv.

[37]  J. Slattery,et al.  Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). 1994. , 1994, Atherosclerosis. Supplements.

[38]  Tanya M. Teslovich,et al.  Biobank-driven genomic discovery yields new insight into atrial fibrillation biology , 2018, Nature Genetics.

[39]  M. Cheung,et al.  GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. , 2001, Journal of lipid research.

[40]  G. Abecasis,et al.  Heritability of Cardiovascular and Personality Traits in 6,148 Sardinians , 2006, PLoS genetics.

[41]  C. Junien,et al.  Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia , 2005, Human mutation.

[42]  K. Behnia,et al.  Beneficial and Adverse Effects of an LXR Agonist on Human Lipid and Lipoprotein Metabolism and Circulating Neutrophils. , 2016, Cell Metabolism.

[43]  A. Hoes,et al.  [Guidelines on cardiovascular disease prevention in clinical practice]. , 2005, Revue medicale de Liege.

[44]  S. Humphries,et al.  Truncated variants of apolipoprotein B cause hypobetalipoproteinaemia. , 1988, Nucleic acids research.

[45]  Bernadette A. Thomas,et al.  Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 , 2015, The Lancet.

[46]  J. Menke,et al.  Liver X receptor agonists as potential therapeutic agents for dyslipidemia and atherosclerosis. , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[47]  A. Khera,et al.  2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. , 2019, Journal of the American College of Cardiology.

[48]  Y. E. Chen,et al.  Endothelial TFEB (Transcription Factor EB) Positively Regulates Postischemic Angiogenesis , 2018, Circulation research.

[49]  J. Gallacher,et al.  C-reactive protein, fibrinogen, and cardiovascular disease prediction. , 2012, The New England journal of medicine.

[50]  Tanya M. Teslovich,et al.  Genome-wide Study of Atrial Fibrillation Identifies Seven Risk Loci and Highlights Biological Pathways and Regulatory Elements Involved in Cardiac Development. , 2018, American journal of human genetics.

[51]  Brian E. Cade,et al.  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.