CMPZ– an algorithm for the efficient comparison of periodic structures

The systematic comparison of the atomic structure of solid compounds has become an important task in crystallography, chemistry, physics and materials science, in particular in the context of structure prediction and structure determination of crystalline solids. In this work, an efficient and robust algorithm for the comparison of periodic structures is presented, which is based on the mapping of the point patterns of the two structures into each other. This algorithm has been implemented as the module CMPZ in the structure visualization and analysis program KPLOT.

[1]  James A. Chisholm,et al.  COMPACK: a program for identifying crystal structure similarity using distances , 2005 .

[2]  S. Schlüter,et al.  The Cube-Shaped Main Group Element Clusters (Bi4S4)4+ and (Bi4Se4)4+ - Synthesis from Chloroaluminate Melts, Crystal Structures and Vibrational Spectra† , 2004 .

[3]  Johannes Beck,et al.  Bi4Te44+ – ein würfelförmiger, polykationischer Hauptgruppenelementcluster , 2001 .

[4]  A. Coelho Whole-profile structure solution from powder diffraction data using simulated annealing , 2000 .

[5]  Roy L. Johnston,et al.  Definition of a `guiding function' in global optimization: a hybrid approach combining energy and R-factor in structure solution from powder diffraction data , 2000 .

[6]  J. C. Schön,et al.  Combined method for ab initio structure solution from powder diffraction data , 1999 .

[7]  J. C. Schön,et al.  Determination of symmetries and idealized cell parameters for simulated structures , 1999 .

[8]  J. C. Schön,et al.  A New Algorithm for Space-Group Determination , 1998 .

[9]  H. Burzlaff,et al.  A Procedure for the Clasification of Non‐Organic Crystal Structures. I. Theoretical Background , 1997 .

[10]  J. C. Schön,et al.  First Step Towards Planning of Syntheses in Solid‐State Chemistry: Determination of Promising Structure Candidates by Global Optimization , 1996 .

[11]  Herbert J. Bernstein,et al.  Bravais lattice invariants , 1995 .

[12]  H. Burzlaff,et al.  On quantitative relations among crystal structures , 1992 .

[13]  J. Kiat,et al.  Neutron and X-ray Rietveld analysis of the three phases of lead orthovanadate Pb3V2O8: Importance of the electronic lone pairs in the martensitic transitions , 1991 .

[14]  J. M. Newsam,et al.  Determination of 4-connected framework crystal structures by simulated annealing , 1989, Nature.

[15]  Lattices and Reduced Cells as Points in 6-Space and Selection of Bravais Lattice Type by Projections , 1988 .

[16]  E. Parthé,et al.  STRUCTURE TIDY– a computer program to standardize crystal structure data , 1987 .

[17]  E. Parthé,et al.  The standardization of inorganic crystal-structure data , 1984 .

[18]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[19]  Herbert J. Bernstein,et al.  A perturbation stable cell comparison technique , 1980 .

[20]  P. Garnier,et al.  Evolution des tenseurs de dilatation thermique en fonction de la temperature. I. Loi generale d'evolution de la symetrie du tenseur , 1978 .

[21]  I. Křivý,et al.  A unified algorithm for determining the reduced (Niggli) cell , 1976 .

[22]  C. Calvo,et al.  Electron Paramagnetic Resonance and X-ray Studies of the Phase Transformation in Pb3P2O8 , 1975 .

[23]  Nobuhiko Saitô,et al.  Tertiary Structure of Proteins. I. : Representation and Computation of the Conformations , 1972 .