The Hart-Shelah example, in stronger logics
暂无分享,去创建一个
[1] S. Shelah,et al. On the number of _{∞₁}-equivalent non-isomorphic models , 2000 .
[2] John T. Baldwin,et al. On strongly minimal sets , 1971, Journal of Symbolic Logic.
[3] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[4] Will Boney,et al. Tameness and extending frames , 2013, J. Math. Log..
[5] R. Grossberg. Classification theory for abstract elementary classes , 2002 .
[6] S. Shelah,et al. On the number of L_{infty,omega_1}-equivalent non-isomorphic models , 1999, math/9908160.
[7] Rami P. Grossberg,et al. Shelah's categoricity conjecture from a successor for tame abstract elementary classes , 2005, Journal of Symbolic Logic.
[8] Saharon Shelah,et al. Examples of non-locality , 2008, J. Symb. Log..
[9] Saharon Shelah,et al. Classification theory for non-elementary classes I: The number of uncountable models ofψ ∈Lω_1, ω. Part A , 1983 .
[10] Will Boney,et al. Large Cardinal Axioms from Tameness in AECs , 2015 .
[11] Saharon Shelah,et al. Classification theory for non-elementary classes I: The number of uncountable models of $$\psi \in L_{w_1 ,w} $$ . Part B. Part B , 1983 .
[12] Will Boney,et al. Good frames in the Hart–Shelah example , 2018, Arch. Math. Log..
[13] Tsuyoshi Murata,et al. {m , 1934, ACML.
[14] Rami P. Grossberg,et al. Galois-stability for Tame Abstract Elementary Classes , 2006, J. Math. Log..
[15] John T. Baldwin,et al. Categoricity, amalgamation, and tameness , 2009 .
[16] Saharon Shelah,et al. Categoricity overP for first orderT or categoricity forϕ ∈Lω1ω can stop at ℵk while holding for ℵ0, ..., ℵk−1 , 1990 .
[17] P. Erdös,et al. Combinatorial Set Theory: Partition Relations for Cardinals , 2012 .