The Hart-Shelah example, in stronger logics

Abstract We generalize the Hart-Shelah example [10] to higher infinitary logics. We build, for each natural number k ≥ 2 and for each infinite cardinal λ, a sentence ψ k λ of the logic L ( 2 λ ) + , ω that (modulo mild set theoretical hypotheses around λ and assuming 2 λ λ + m ) is categorical in λ + , … , λ + k − 1 but not in ℶ k + 1 ( λ ) + (or beyond); we study the dimensional encoding of combinatorics involved in the construction of this sentence and study various model-theoretic properties of the resulting abstract elementary class K ⁎ ( λ , k ) = ( M o d ( ψ k λ ) , ≺ ( 2 λ ) + , ω ) in the finite interval of cardinals λ , λ + , … , λ + k .

[1]  S. Shelah,et al.  On the number of _{∞₁}-equivalent non-isomorphic models , 2000 .

[2]  John T. Baldwin,et al.  On strongly minimal sets , 1971, Journal of Symbolic Logic.

[3]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[4]  Will Boney,et al.  Tameness and extending frames , 2013, J. Math. Log..

[5]  R. Grossberg Classification theory for abstract elementary classes , 2002 .

[6]  S. Shelah,et al.  On the number of L_{infty,omega_1}-equivalent non-isomorphic models , 1999, math/9908160.

[7]  Rami P. Grossberg,et al.  Shelah's categoricity conjecture from a successor for tame abstract elementary classes , 2005, Journal of Symbolic Logic.

[8]  Saharon Shelah,et al.  Examples of non-locality , 2008, J. Symb. Log..

[9]  Saharon Shelah,et al.  Classification theory for non-elementary classes I: The number of uncountable models ofψ ∈Lω_1, ω. Part A , 1983 .

[10]  Will Boney,et al.  Large Cardinal Axioms from Tameness in AECs , 2015 .

[11]  Saharon Shelah,et al.  Classification theory for non-elementary classes I: The number of uncountable models of $$\psi \in L_{w_1 ,w} $$ . Part B. Part B , 1983 .

[12]  Will Boney,et al.  Good frames in the Hart–Shelah example , 2018, Arch. Math. Log..

[13]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[14]  Rami P. Grossberg,et al.  Galois-stability for Tame Abstract Elementary Classes , 2006, J. Math. Log..

[15]  John T. Baldwin,et al.  Categoricity, amalgamation, and tameness , 2009 .

[16]  Saharon Shelah,et al.  Categoricity overP for first orderT or categoricity forϕ ∈Lω1ω can stop at ℵk while holding for ℵ0, ..., ℵk−1 , 1990 .

[17]  P. Erdös,et al.  Combinatorial Set Theory: Partition Relations for Cardinals , 2012 .