Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion

Abstract In this paper, we consider the existence of nontrivial solutions for a class of fractional advection–dispersion equations. A new existence result is established by introducing a suitable fractional derivative Sobolev space and using the critical point theorem.

[1]  Jack Eggleston,et al.  Identification of large‐scale hydraulic conductivity trends and the influence of trends on contaminant transport , 1998 .

[2]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[3]  Yonghong Wu,et al.  Variational structure and multiple solutions for a fractional advection-dispersion equation , 2014, Comput. Math. Appl..

[4]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[5]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[6]  Gabriele Bonanno,et al.  A critical point theorem and existence results for a nonlinear boundary value problem , 2010 .

[7]  Haibo Chen,et al.  Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods , 2015, Appl. Math. Comput..

[8]  Hong-Rui Sun,et al.  Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique , 2012, Comput. Math. Appl..

[9]  Yong Zhou,et al.  Existence of solutions for a class of fractional boundary value problems via critical point theory , 2011, Comput. Math. Appl..

[10]  Yn Li,et al.  EXISTENCE OF SOLUTIONS TO FRACTIONAL BOUNDARY-VALUE PROBLEMS WITH A PARAMETER , 2013 .

[11]  Haifeng Zhang,et al.  Existence and multiplicity results for fractional differential inclusions with Dirichlet boundary conditions , 2013, Appl. Math. Comput..

[12]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[13]  Jian-Ping Sun,et al.  Existence of positive solution for a third-order three-point BVP with sign-changing Green ’ s function ∗ , 2013 .

[14]  L. Gelhar,et al.  Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis , 1992 .

[15]  D. Benson,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[16]  Meng-Rong Li,et al.  Asymptotic behavior of positive solutions of the nonlinear differential equation t²u''= u{^n},1 < n , 2013 .

[17]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .