Congenital nystagmus: hypotheses for its genesis and complex waveforms within a behavioral ocular motor system model.

Attempts to simulate dysfunction within ocular motor system (OMS) models capable of exhibiting known ocular motor behavior have provided valuable insight into the structure of the OMS required for normal visual function. The pendular waveforms of congenital nystagmus (CN) appear to be quite complex, composed of a sustained sinusoidal oscillation punctuated by braking saccades and foveating saccades followed by periods of extended foveation. Previously, we verified that these quick phases are generated by the same mechanism as voluntary saccades. We propose a computer model of the ocular motor system that simulates the responses of individuals with pendular CN (including its variable waveforms) based on the instability exhibited by the normal pursuit subsystem and its interaction with other components of the normal ocular motor control system. Fixation data from subjects with CN using both infrared and magnetic search coil oculography were used as templates for our simulations. Our OMS model simulates data from individuals with CN during fixation and in response to complex stimuli. The use of position and velocity efference copy to suppress oscillopsia is the key element in allowing for normal ocular motor behavior. The model's responses to target steps, pulse-steps, ramps, and step-ramps support the hypothetical explanation for the conditions that result in sustained pendular oscillation and the rules for the corrective saccadic responses that shape this underlying oscillation into the well-known family of pendular CN waveforms: pendular (P), pseudopendular (PP), pendular with foveating saccades (Pfs), and pseudopendular with foveating saccades (PPfs). Position error determined the saccadic amplitudes of foveating saccades, whereas stereotypical braking saccades were not dependent on visual information. Additionally, we propose a structure and method of operation for the fixation subsystem, and use it to prolong the low-velocity intervals immediately following foveating saccades. The model's robustness supports the hypothesis that the pendular nystagmus seen in CN is due to a loss of damping of the normal pursuit-system velocity oscillation (functionally, it is pursuit-system nystagmus--PSN).

[1]  B. L. Zuber,et al.  Microsaccades and the Velocity-Amplitude Relationship for Saccadic Eye Movements , 1965, Science.

[2]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[3]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[4]  R B Daroff,et al.  Corrective movements following refixation saccades: type and control system analysis. , 1972, Vision research.

[5]  G. Gauthier,et al.  EYE MOVEMENT RECORDINGS AS A DIAGNOSTIC TOOL IN A CASE OF CONGENITAL NYSTAGMUS* , 1972, American journal of optometry and archives of American Academy of Optometry.

[6]  L. Dell’Osso FIXATION CHARACTERISTICS IN HEREDITARY CONGENITAL NYSTAGMUS* , 1973, American journal of optometry and archives of American Academy of Optometry.

[7]  L F Dell'Osso,et al.  Hereditary congenital nystagmus. An intrafamilial study. , 1974, Archives of ophthalmology.

[8]  L F Dell'Osso,et al.  Macro square wave jerks , 1975, Neurology.

[9]  B. Troost,et al.  Saccadic eye movement latencies to multimodal stimuli Intersubject variability and temporal efficiency , 1975, Vision Research.

[10]  L. Osso CONGENITAL NYSTAGMUS WAVEFORMS AND FOVEATION STRATEGY , 1975 .

[11]  Braking saccade--a new fast eye movement. , 1976, Aviation, space, and environmental medicine.

[12]  L. A. Abel,et al.  Analog Model for Gaze-Evoked Nystagmus , 1978, IEEE Transactions on Biomedical Engineering.

[13]  L F Dell'Osso,et al.  Latent, manifest latent, and congenital nystagmus. , 1979, Archives of ophthalmology.

[14]  W. Becker,et al.  An analysis of the saccadic system by means of double step stimuli , 1979, Vision Research.

[15]  R. Leigh,et al.  Cerebellar control of ocular gaze stability , 1980, Annals of neurology.

[16]  L. F. Dell'Osso,et al.  Myasthenia gravis: Analog computer model , 1980, Experimental Neurology.

[17]  R. D. Yee,et al.  Study of congenital nystagmus: optokinetic nystagmus. , 1980, The British journal of ophthalmology.

[18]  Alexander's Law: A Model and Resulting Study , 1982, The Annals of otology, rhinology, and laryngology.

[19]  J. Flynn,et al.  The nystagmus blockage syndrome. Congenital nystagmus, manifest latent nystagmus, or both? , 1983, Investigative ophthalmology & visual science.

[20]  William F. Hughes,et al.  Functional Basis of Ocular Motility Disorders , 1984 .

[21]  M. Goodale,et al.  Eye Movements of Human Albinos , 1984, American Journal of Optometry and Physiological Optics.

[22]  The influence of preexisting oscillations on the binocular optokinetic response. , 1985, Annals of neurology.

[23]  The influence of preexiting oscillations on the binoculars optokinetic response , 1985 .

[24]  L. Dell’Osso Congenital, latent and manifest latent nystagmus--similarities, differences and relation to strabismus. , 1985, Japanese journal of ophthalmology.

[25]  L. F. DELeOSSO Evaluation of smooth pursuit in the presence of congenital nystagmus , 1986 .

[26]  D. Robinson,et al.  Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. , 1987, Journal of neurophysiology.

[27]  L F Dell'Osso,et al.  Spasmus nutans. A quantitative prospective study. , 1987, Archives of ophthalmology.

[28]  D. A. Robinson,et al.  Transition dynamics between pursuit and fixation suggest different systems , 1988, Vision Research.

[29]  R. Leigh,et al.  Oscillopsia, retinal image stabilization and congenital nystagmus. , 1988, Investigative ophthalmology & visual science.

[30]  Richard V Abadi,et al.  Retinal Fixation Behavior in Human Albinos , 1989, Optometry and vision science : official publication of the American Academy of Optometry.

[31]  Unilateral reversal of smooth pursuit and optokinetic nystagmus. , 1989, Revue neurologique.

[32]  S. G. Lisberger,et al.  A Control Systems Model of Smooth Pursuit Eye Movements with Realistic Emergent Properties , 1989, Neural Computation.

[33]  U. Buttner,et al.  Smooth pursuit mechanisms in congenital nystagmus , 1989 .

[34]  Richard V Abadi,et al.  Retinal slip velocities in congenital nystagmus , 1989, Vision Research.

[35]  S. Gould Exaptation: A Crucial Tool for an Evolutionary Psychology , 1991 .

[36]  L. Abel,et al.  Intermittent oscillopsia in a case of congenital nystagmus. Dependence upon waveform. , 1991, Investigative ophthalmology & visual science.

[37]  R. Tusa,et al.  Voluntary control of congenital nystagmus , 1992 .

[38]  A. Fuchs,et al.  The neuronal substrate of integration in the oculomotor system , 1992, Progress in Neurobiology.

[39]  Eileen Kowler,et al.  Slow control with eccentric targets: Evidence against a position-corrective model , 1993, Vision Research.

[40]  R. Leigh,et al.  Hereditary congenital nystagmus and gaze‐holding failure , 1993, Neurology.

[41]  H. Bedell,et al.  Extraretinal signals for congenital nystagmus. , 1993, Investigative ophthalmology & visual science.

[42]  P. Apkarian,et al.  Visual evoked response asymmetry only in the albino member of a family with congenital nystagmus. , 1993, Investigative ophthalmology & visual science.

[43]  L F Dell'Osso,et al.  Evidence suggesting individual ocular motor control of each eye (muscle). , 1994, Journal of vestibular research : equilibrium & orientation.

[44]  Robert W. Williams,et al.  Analysis of the retinas and optic nerves of achiasmatic belgian sheepdogs , 1995, The Journal of comparative neurology.

[45]  C. Harris Problems in modelling congenital nystagmus: Towards a new model , 1995 .

[46]  R. Williams,et al.  Ocular motor abnormalities in achiasmatic mutant Belgian sheepdogs: Unyoked eye movements in a mammal , 1995, Vision Research.

[47]  R. Wurtz,et al.  Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. , 1995, Journal of neurophysiology.

[48]  Robert W. Kentridge,et al.  Eye movement research : mechanisms, processes and applications , 1995 .

[49]  C. L. Doren,et al.  The effects of afferent stimulation on congenital nystagmus foveation periods , 1995, Vision Research.

[50]  D L Robinson,et al.  Modified saccades evoked by stimulation of the macaque superior colliculus account for properties of the resettable integrator. , 1995, Journal of neurophysiology.

[51]  Susana T. L. Chung,et al.  Effect of retinal image motion on visual acuity and contour interaction in congenital nystagmus , 1995, Vision Research.

[52]  Lance M. Optican,et al.  A field theory of saccade generation: Temporal-to-spatial transform in the superior colliculus , 1995, Vision Research.

[53]  R. Wurtz,et al.  Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. , 1995, Journal of neurophysiology.

[54]  F A Miles,et al.  Transitions between pursuit eye movements and fixation in the monkey: dependence on context. , 1996, Journal of neurophysiology.

[55]  C. Kaneko Effect of ibotenic acid lesions of the omnipause neurons on saccadic eye movements in rhesus macaques. , 1996, Journal of neurophysiology.

[56]  Velocity Criteria for “Foveation Periods” Determined from Image Motions Simulating Congenital Nystagmus , 1996, Optometry and vision science : official publication of the American Academy of Optometry.

[57]  R. Leigh,et al.  Oscillopsia suppression and foveation-period variation in congenital, latent, and acquired nystagmus , 1997 .

[58]  Louis F. Dell'Osso,et al.  Generation of braking saccades in congenital nystagmus , 1999 .

[59]  R. Hertle,et al.  Clinical and ocular motor analysis of congenital nystagmus in infancy. , 1999, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[60]  Kaoru Yoshida,et al.  Evidence for brainstem structures participating in oculomotor integration. , 2000, Science.

[61]  Michael Bach,et al.  Visual motion detection in man is governed by non-retinal mechanisms , 2000, Vision Research.

[62]  M. Korth,et al.  The sequential processing of visual motion in the human electroretinogram and visual evoked potential , 2000, Visual Neuroscience.

[63]  David S. Broomhead,et al.  Modelling of congenital nystagmus waveforms produced by saccadic system abnormalities , 2000, Biological Cybernetics.

[64]  Louis F. Dell'Osso,et al.  A normal ocular motor system model that simulates the dual-mode fast phases of latent/manifest latent nystagmus , 2001, Biological Cybernetics.

[65]  Jean Bennett,et al.  Gene therapy restores vision in a canine model of childhood blindness , 2001, Nature Genetics.

[66]  R. Leigh,et al.  The Torsional Component of “Horizontal” Congenital Nystagmus , 2002, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[67]  R. Hertle,et al.  Clinical and ocular motor analysis of the infantile nystagmus syndrome in the first 6 months of life , 2002, The British journal of ophthalmology.

[68]  George K. Hung,et al.  Models of the visual system , 2002 .

[69]  Richard V Abadi,et al.  Motor and sensory characteristics of infantile nystagmus , 2002, The British journal of ophthalmology.

[70]  Daniel Durstewitz,et al.  Self-Organizing Neural Integrator Predicts Interval Times through Climbing Activity , 2003, The Journal of Neuroscience.

[71]  L. Dell’Osso,et al.  Nystagmus and Saccadic Intrusions and Oscillations , 2003 .

[72]  Louis F. Dell'Osso,et al.  Staircase Saccadic Intrusions and Transient Yoking and Neural Integrator Failures Associated with Cerebellar Hypoplasia , 2003 .

[73]  R. B. Daroff,et al.  Congenital nystagmus waveforms and foveation strategy , 1975, Documenta Ophthalmologica.

[74]  L. F. Dell'Osso,et al.  A model of Alexander's law of vestibular nystagmus , 1979, Biological Cybernetics.

[75]  Richard V Abadi,et al.  Waveform characteristics in congenital nystagmus , 1987, Documenta Ophthalmologica.

[76]  L. Optican,et al.  A hypothetical explanation of congenital nystagmus , 1984, Biological Cybernetics.

[77]  J. L. Gordon,et al.  A model of the smooth pursuit eye movement system , 1986, Biological Cybernetics.

[78]  R. Leigh,et al.  Characteristics of braking saccades in congenital nystagmus , 2003, Documenta Ophthalmologica.

[79]  L. Dell’Osso,et al.  An Expanded Nystagmus Acuity Function: Intra- and Intersubject Prediction of Best-Corrected Visual Acuity , 2002, Documenta Ophthalmologica.

[80]  R. Steinman,et al.  Foveation dynamics in congenital nystagmus I: Fixation , 2004, Documenta Ophthalmologica.

[81]  A. Bronstein,et al.  Reduced duration of a visual motion aftereffect in congenital nystagmus , 1998, Documenta Ophthalmologica.

[82]  H. Collewijn,et al.  Foveation dynamics in congenital nystagmus II: Smooth pursuit , 2004, Documenta Ophthalmologica.

[83]  H. Collewijn,et al.  Foveation dynamics in congenital nystagmus III: Vestibulo-ocular reflex , 2004, Documenta Ophthalmologica.

[84]  L. M. Optican,et al.  Superior colliculus neurons provide the saccadic motor error signal , 2004, Experimental Brain Research.