Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse

[1]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[2]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Richard G. W. Anderson,et al.  Functional properties of multiple synaptotagmins in brain , 1994, Neuron.

[4]  T. Südhof,et al.  Ca(2+)-dependent conformational change in synaptotagmin I. , 1994, The Journal of biological chemistry.

[5]  Richard G. W. Anderson,et al.  Synaptotagmin I is a high affinity receptor for clathrin AP-2: Implications for membrane recycling , 1994, Cell.

[6]  J. Morgan,et al.  A third synaptotagmin gene, Syt3, in the mouse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Thomas C. Südhof,et al.  The role of Rab3A in neurotransmitter release , 1994, Nature.

[8]  S. Seino,et al.  Synaptotagmin III is a novel isoform of rat synaptotagmin expressed in endocrine and neuronal cells. , 1994, The Journal of biological chemistry.

[9]  T. Südhof,et al.  A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. , 1993, The Journal of biological chemistry.

[10]  Thomas C. Südhof,et al.  Short-term synaptic plasticity is altered in mice lacking synapsin I , 1993, Cell.

[11]  Hugo J. Bellen,et al.  Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release , 1993, Cell.

[12]  M. Nonet,et al.  Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin , 1993, Cell.

[13]  T. Schwarz,et al.  Synaptic transmission persists in synaptotagmin mutants of Drosophila , 1993, Cell.

[14]  G. Augustine,et al.  Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis , 1993, Nature.

[15]  K. Kaibuchi,et al.  Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin , 1993, Molecular and cellular biology.

[16]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[17]  T. Südhof,et al.  Interaction of synaptotagmin with the cytoplasmic domains of neurexins , 1993, Neuron.

[18]  R. Zucker,et al.  Multiple calcium-dependent processes related to secretion in bovine chromaffin cells , 1993, Neuron.

[19]  R. Scheller,et al.  A role for synaptotagmin (p65) in regulated exocytosis , 1993, Cell.

[20]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[21]  T. Südhof,et al.  Synaptotagmin: a calcium sensor on the synaptic vesicle surface. , 1992, Science.

[22]  W. Betz,et al.  Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. , 1992, Science.

[23]  Thomas C. Südhof,et al.  Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis , 1991, Nature.

[24]  C. Stevens,et al.  Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Südhof,et al.  Synaptotagmin II. A novel differentially distributed form of synaptotagmin. , 1991, The Journal of biological chemistry.

[26]  S. Brenner,et al.  A phorbol ester/diacylglycerol-binding protein encoded by the unc-13 gene of Caenorhabditis elegans. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Allan Bradley,et al.  Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice , 1991, Cell.

[28]  T. Südhof,et al.  Domain structure of synaptotagmin (p65) , 1991, The Journal of biological chemistry.

[29]  T. Südhof,et al.  Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. , 1991, The Journal of biological chemistry.

[30]  J. Meldolesi,et al.  Mode of action of alpha-latrotoxin: role of divalent cations in Ca2(+)-dependent and Ca2(+)-independent effects mediated by the toxin. , 1990, Molecular pharmacology.

[31]  T. Südhof,et al.  Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C , 1990, Nature.

[32]  C. Stevens,et al.  NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus , 1989, Nature.

[33]  T. Südhof,et al.  Transmembrane topography and evolutionary conservation of synaptophysin. , 1989, The Journal of biological chemistry.

[34]  M. Capecchi,et al.  Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells , 1987, Cell.

[35]  K. Magleby,et al.  Differential effects of Ba2+, Sr2+, and Ca2+ on stimulation-induced changes in transmitter release at the frog neuromuscular junction , 1980, The Journal of general physiology.

[36]  C. Stevens,et al.  The kinetics of transmitter release at the frog neuromuscular junction , 1972, The Journal of physiology.

[37]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[38]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[39]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[40]  T. Südhof,et al.  Synaptic vesicles and exocytosis. , 1994, Annual review of neuroscience.

[41]  R. Scheller,et al.  A molecular description of synaptic vesicle membrane trafficking. , 1994, Annual review of biochemistry.

[42]  R. Eckert,et al.  Divalent cations differentially support transmitter release at the squid giant synapse. , 1984, The Journal of physiology.