Strong Modification of Quantum Dot Spontaneous Emission via Gap Plasmon Coupling in Metal Nanoslits
暂无分享,去创建一个
A metal−dielectric−metal (MDM) waveguide with a nanoscale gap supports highly confined surface plasmon−polariton modes, termed gap plasmons. The spontaneous emission of an emitter placed in such a metal nanogap is expected to be strongly modified due to coupling to gap plasmons. We investigate the light emission properties of semiconductor quantum dots (QD) in a metal nanoslit, which is a truncated MDM waveguide. More specifically, we measure both the lifetime and the state of polarization of the out-coupled QD emission from a metal nanoslit. We observe clear lifetime and polarization changes of QD emission. As the slit width gets smaller, the QD exciton lifetime gradually decreases, and its emission becomes polarized normal to the slit, as expected for gap plasmon coupled light emission. We also find that the polarization of the collected QD emission is flipped (i.e., becomes parallel to a slit) when the excited emitters are located just outside the slit. We have conducted dipole emission calculations in...