Tailoring molecular island shapes: influence of microscopic interaction on mesostructure

[1]  Lei Zhang,et al.  Selective self-assembly of 2,3-diaminophenazine molecules on MoSe2 mirror twin boundaries , 2019, Nature Communications.

[2]  Jiyeon Ku,et al.  Dimensionality Control of Self-Assembled Azobenzene Derivatives on a Gold Surface , 2019, The Journal of Physical Chemistry C.

[3]  J. Harvey,et al.  Halogenated building blocks for 2D crystal engineering on solid surfaces: lessons from hydrogen bonding† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc04499f , 2019, Chemical science.

[4]  B. Alemán,et al.  A Bottom-Up Approach to Solution-Processed, Atomically Precise Graphitic Cylinders on Graphite. , 2018, Nano letters.

[5]  W. Lewis,et al.  Controlling the Two-Dimensional Self-Assembly of Functionalized Porphyrins via Adenine–Thymine Quartet Formation , 2018, The Journal of Physical Chemistry C.

[6]  P. Szabelski,et al.  On-surface self-assembly of tetratopic molecular building blocks. , 2018, Physical chemistry chemical physics : PCCP.

[7]  A. Troisi,et al.  Quantifying the “Subtle Interplay” between Intermolecular and Molecule–Substrate Interactions in Molecular Assembly on Surfaces , 2018, The Journal of Physical Chemistry C.

[8]  A. T. S. Wee,et al.  Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. , 2018, ACS nano.

[9]  Saeed Amirjalayer,et al.  Site-Specific Adsorption of Aromatic Molecules on a Metal/Metal Oxide Phase Boundary. , 2018, Nano letters.

[10]  M. Cinchetti,et al.  Control of Cooperativity through a Reversible Structural Phase Transition in MoMo‐Methyl/Cu(111) , 2018 .

[11]  Jing Liu,et al.  Adsorption and Assembly of Photoelectronic TiOPc Molecules on Coinage Metal Surfaces , 2018 .

[12]  A. Tsai,et al.  Building 2D quasicrystals from 5-fold symmetric corannulene molecules , 2018, Nano Research.

[13]  N. Pearce,et al.  Complexity of two-dimensional self-assembled arrays at surfaces. , 2017, Chemical communications.

[14]  Peter Liljeroth,et al.  Molecular assembly on two-dimensional materials , 2016, Nanotechnology.

[15]  T. Fritz,et al.  Growth of coronene on (100)- and (111)-surfaces of fcc-crystals , 2015 .

[16]  F. Pauly,et al.  Highly Ordered Surface Self-Assembly of Fe₄ Single Molecule Magnets. , 2015, Nano letters.

[17]  C. Kumpf,et al.  The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces. , 2015, Physical chemistry chemical physics : PCCP.

[18]  Juan Li,et al.  Three-dimensional bicomponent supramolecular nanoporous self-assembly on a hybrid all-carbon atomically flat and transparent platform. , 2014, Nano letters.

[19]  M. Boero,et al.  Steric and electronic selectivity in the synthesis of Fe-1,2,4,5-tetracyanobenzene (TCNB) complexes on Au(111): From topological confinement to bond formation , 2014, Nano Research.

[20]  C. Kumpf,et al.  Unexpected interplay of bonding height and energy level alignment at heteromolecular hybrid interfaces , 2014, Nature Communications.

[21]  J. Ortega,et al.  Changes in adsorption heights upon self-assembly of bicomponent supramolecular networks , 2013, 1309.6440.

[22]  Yeliang Wang,et al.  Template-directed assembly of pentacene molecules on epitaxial graphene on Ru(0001) , 2013, Nano Research.

[23]  S. Soubatch,et al.  Role of functional groups in surface bonding of planar π-conjugated molecules , 2012 .

[24]  R. Miranda,et al.  Molecular Self‐Assembly at Solid Surfaces , 2011, Advanced materials.

[25]  M. Weinert,et al.  Dynamically stabilized growth of polar oxides: the case of MgO(111). , 2011, Physical review letters.

[26]  N. Champness,et al.  Two-dimensional supramolecular chemistry on surfaces , 2011 .

[27]  Yeliang Wang,et al.  Tuning structural and mechanical properties of two-dimensional molecular crystals: the roles of carbon side chains. , 2011, Nano letters (Print).

[28]  K. Kern,et al.  Rational design of two-dimensional nanoscale networks by electrostatic interactions at surfaces. , 2010, ACS nano.

[29]  M. Rohlfing,et al.  Toward Molecular Nanowires Self-Assembled on an Insulating Substrate: Heptahelicene-2-carboxylic acid on Calcite (1014) , 2010 .

[30]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[31]  L. Bartels,et al.  A Homomolecular Porous Network at a Cu(111) Surface , 2006, Science.

[32]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[33]  S. Mannsfeld,et al.  Understanding organic-inorganic heteroepitaxial growth of molecules on crystalline substrates : Experiment and theory , 2005 .

[34]  B. Hammer,et al.  Growth of unidirectional molecular rows of cysteine on Au(110)-(1 x 2) driven by adsorbate-induced surface rearrangements. , 2004, Physical review letters.

[35]  E. W. Meijer,et al.  2D-Structures of Quadruple Hydrogen Bonded Oligo(p-phenylenevinylene)s on Graphite: Self-Assembly Behavior and Expression of Chirality , 2004 .

[36]  N. Oxtoby,et al.  Controlling molecular deposition and layer structure with supramolecular surface assemblies , 2003, Nature.

[37]  F. D. Schryver,et al.  Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy , 2003 .

[38]  A. Shluger,et al.  Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface , 2002 .

[39]  F. Cotton,et al.  The lengths of molybdenum to molybdenum quadruple bonds: correlations, explanations, and corrections. , 2002, Inorganic chemistry.

[40]  A. Shluger,et al.  Unambiguous interpretation of atomically resolved force microscopy images of an insulator. , 2001, Physical review letters.

[41]  M. Ward,et al.  Epitaxy and Molecular Organization on Solid Substrates , 2001 .

[42]  C. Noguera,et al.  Polar oxide surfaces , 2000 .

[43]  J. Engelhardt,et al.  Atomic force microscopy study of the CaF2(111) surface : from cleavage via island to evaporation topographies , 2000 .

[44]  D. Lichtenberger,et al.  The Electronic Nature of the Metal-Metal Quadruple Bond: Variable Photon Energy Photoelectron Spectroscopy of Mo2(O2CCH3)4 , 1992 .

[45]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[46]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[47]  Jean-Marie Lehn,et al.  Supramolecular chemistry — Scope and perspectives: Molecules — Supermolecules — Molecular devices , 1988 .

[48]  D. Lichtenberger,et al.  Intermolecular influences on M-M multiple bonds from thin-film UPS studies of group VI M2(O2CCH3)4 complexes , 1987 .

[49]  M. Fink,et al.  The molecular structure of dimolybdenum tetra-acetate , 1982 .

[50]  M. Bénard,et al.  Electron-density distribution in crystals of tetra-μ-acetato-dimolybdenum(Mo–Mo) , 1981 .

[51]  R. Mason,et al.  The Molecular Structure of Molybdenum(II) Acetate , 1965 .

[52]  R. G. Ross,et al.  High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten , 1963 .

[53]  F. Finocchi,et al.  Polarity of oxide surfaces and nanostructures , 2007 .

[54]  M. Humphry,et al.  Assembly and Processing of Hydrogen Bond Induced Supramolecular Nanostructures , 2003 .

[55]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .