Nonlinear Functional Analysis and Nonlinear Integral Equations of Hammerstein and Urysohn Type

Publisher Summary This chapter discusses nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type. The theory of nonlinear integral equations of Hammerstein type has been, since its inception in the paper of Hammerstein, one of the most important domains of application of the ideas and techniques of nonlinear functional analysis, second only to the theory of solutions of boundary value problems for nonlinear partial differential equations. The development of the fixed point and degree theory for compact nonlinear mappings in Banach spaces was strongly influenced, in its form, by the theory of nonlinear integral equations and was directly applied to this domain and many others. The chapter presents a unified development of the theory of the Hammerstein equation using the theory of the topological degree for mappings of the form I - C with C compact as well as the basic theory of monotone nonlinear mappings from X to X*.

[1]  S. Pokhozhaev Solvability of nonlinear equations with odd operators , 1967 .

[2]  Projection Methods in Nonlinear Numerical Functional Analysis , 1967 .

[3]  B. Calvert,et al.  Multiplicative perturbation of nonlinear m-accretive operators , 1972 .

[4]  F. Browder,et al.  FIXED-POINT THEOREMS FOR NONCOMPACT MAPPINGS IN HILBERT SPACE. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[5]  F. Browder,et al.  Nonlinear monotone and accretive operators in banach spaces. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. V. Coffman,et al.  A minimum-maximum principle for a class of non-linear integral equations , 1969 .

[7]  H. Amann Über die Existenz und iterative Berechnung einer Lösung der Hammerstein'schen Gleichung , 1968 .

[8]  F. Browder Group invariance in nonlinear functional analysis , 1970 .

[9]  F. Browder Existence and approximation of solutions of nonlinear variational inequalities. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[10]  F. Browder Nonlinear elliptic boundary value problems , 1963 .

[11]  A. Hammerstein Nichtlineare Integralgleichungen nebst Anwendungen , 1930 .

[12]  H. Amann Uber die Existenz und Eindeutigkeit einer Losung der Hammerstein' schen Gleichung in Banachraumen , 1969 .

[13]  H. Amann Über die konvergenzgeschwindigkeit des Galerkin-Verfahrens für die Hammersteinsche Gleichung , 1970 .

[14]  W. Petryshyn,et al.  New existence theorems for nonlinear equations of Hammerstein type. , 1971 .

[15]  Peter Hess,et al.  Nonlinear mappings of monotone type in Banach spaces , 1972 .

[16]  F. Browder Topology and non-linear functional equations , 1968 .

[17]  R. Rockafellar Local boundedness of nonlinear, monotone operators. , 1969 .

[18]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[19]  R. Iglisch Existenz- und Eindeutigkeitssätze bei nichtlinearen Integralgleichungen , 1933 .

[20]  P. Hess On nonlinear mappings of monotone type homotopic to odd operators , 1972 .

[21]  A generalized degree for uniform limits of A-proper mappings , 1971 .

[22]  Roger D. Nussbaum,et al.  The topological degree for noncompact nonlinear mappings in Banach spaces , 1968 .

[23]  B. Ton Nonlinear operators on convex subsets of Banach spaces , 1969 .

[24]  M. Crandall,et al.  Multiple solutions of a nonlinear integral equation , 1970 .

[25]  Felix E. Browder,et al.  Nonlinear variational inequalities and maximal monotone mappings in Banach spaces , 1969 .

[26]  C. P. Gupta,et al.  Monotone operators and nonlinear integral equations of Hammerstein type , 1969 .

[27]  H. Amann Ein Existenz- und Eindeutigkeitssatz für die Hammersteinsche Gleichung in Banachräumen , 1969 .

[28]  M. A. Krasnoselʹskii Topological methods in the theory of nonlinear integral equations , 1968 .

[29]  J. Batt,et al.  Nonlinear compact mappings and their adjoints , 1970 .

[30]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[31]  A. Cellina,et al.  A NEW APPROACH TO THE DEFINITION ON TOPOLOGICAL DEGREE FOR MULTI-VALUED MAPPINGS. , 1969 .

[32]  Michael Golomb Zur Theorie der nichtlinearen Integralgleichungen, Integralgleichungssysteme und allgemeinen Funktionalgleichungen , 1935 .

[33]  Invariance of domain theorem for locally A-proper mappings and its implications☆ , 1970 .

[34]  R. Rockafellar Convexity properties of nonlinear maximal monotone operators , 1969 .

[35]  Zum Galerkin-Verfahren für die hammersteinsche gleichung , 1969 .

[36]  Felix E. Browder,et al.  The solvability of non-linear functional equations , 1963 .

[37]  F. Browder NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS AND THE GENERALIZED TOPOLOGICAL DEGREE BY FELIX E. BROWDER , 2007 .

[38]  Haim Brezis,et al.  Perturbations of nonlinear maximal monotone sets in banach space , 1970 .

[39]  F. Browder The fixed point theory of multi-valued mappings in topological vector spaces , 1968 .

[40]  W. Petryshyn On nonlinear equations involving pseudo-A-proper mappings and their uniform limits with applications , 1972 .

[41]  F. Browder,et al.  On the unification of the calculus of variations and the theory of monotone nonlinear operators in banach spaces. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Calvert The local fixed point index for multivalued transformations in a Banach space , 1970 .

[43]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .

[44]  E. Rothe Weak topology and nonlinear integral equations , 1949 .

[45]  R. I. Kachurovskii Non-Linear Monotone Operators in Banach Spaces , 1968 .

[46]  F. Browder Nonlinear elliptic boundary value problems. II , 1965 .

[47]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[48]  C. P. Gupta,et al.  Maximal monotone operators and nonlinear integral equations of Hammerstein type , 1970 .

[49]  H. Amann Hammersteinsche Gleichungen mit kompakten Kernen , 1970 .

[50]  J. Lions,et al.  Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder , 1964 .

[51]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[52]  H. Amann,et al.  Existence theorems for equations of hammerstein type , 1972 .

[53]  MAPPING THEOREMS FOR NONCOMPACT NONLINEAR OPERATORS IN BANACH SPACES. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. Minty,et al.  ON A "MONOTONICITY" METHOD FOR THE SOLUTION OF NONLINEAR EQUATIONS IN BANACH SPACES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[55]  W. V Petryshyn Antipodes theorem for A-proper mappings and its applications to mappings of the modified type (S) or (S)+ and to mappings with the pm property☆ , 1971 .

[56]  Nonlinear functional equations in Banach spaces and homotopy arguments , 1971 .

[57]  P. Hess Nonlinear functional equations and eigenvalue problems in nonseparable Banach spaces , 1971 .

[58]  F. Browder Nonlinear maximal monotone operators in Banach space , 1968 .

[59]  C. Dolph,et al.  Non-Linear Integral Equations of the Hammerstein Type. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Felix E. Browder,et al.  Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces , 1969 .

[61]  F. Browder,et al.  VARIATIONAL BOUNDARY VALUE PROBLEMS FOR QUASI-LINEAR ELLIPTIC EQUATIONS OF ARBITRARY ORDER. , 1963, Proceedings of the National Academy of Sciences of the United States of America.